1,756 research outputs found

    First determination of the one-proton induced Non-Mesonic Weak Decay width of p-shell {\Lambda}-Hypernuclei

    Get PDF
    Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained from single proton spectra, Gamma_2N/Gamma_p = 0.50 +/- 0.24, and from neutron and proton coincidence spectra, Gamma_2N/Gamma_p = 0.36 +/- 0.14stat +0.05sys -0.04sys , in full agreement with previously published ones. With these values, a method is developed to extract the one-proton induced decay width in units of the free Lambda decay width, Gamma_p/Gamma_Lambda, without resorting to Intra Nuclear Cascade models but by exploiting only experimental data, under the assumption of a linear dependence on A of the Final State Interaction contribution. This is the first systematic determination ever done and it agrees within the errors with recent theoretical calculations.Comment: 16 pages, 3 figures, 2 table

    Status of cosmic-ray antideuteron searches

    Full text link
    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theoretical and experimental uncertainties of antideuteron production and propagation in our Galaxy, as well as give an experimental cosmic-ray antideuteron search status update. This report is a condensed summary of the article "Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron" (arXiv:1505.07785).Comment: 9 pages, 4 figures, ICRC 2015 proceeding

    New detectors for the kaon and hypernuclear experiments with KaoS at MAMI and with PANDA at GSI

    Get PDF
    The KaoS spectrometer at the Mainz Microtron MAMI, Germany, is perceived as the ideal candidate for a dedicated spectrometer in kaon and hypernuclei electroproduction. KaoS will be equipped with new read-out electronics, a completely new focal plane detector package consisting of scintillating fibres, and a new trigger system. First prototypes of the fibre detectors and the associated new front-end electronics are shown in this contribution. The Mainz hypernuclei research program will complement the hypernuclear experiments at the planned FAIR facility at GSI, Germany. At the proposed antiproton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the PANDA Collaboration. The experiments require the operation of high purity germanium (HPGe) detectors in high magnetic fields (B= 1T) in the presence of a large hadronic background. The performance of high resolution Ge detectors in such an environment has been investigated.Comment: Presentation at International Symposium on the Development of Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, Stanford, Ca (SNIC06), 6 pages, LaTeX, 11 eps figure

    Σ−p\Sigma^- p emission rates in K−K^- absorptions at rest on 6^6Li, 7^7Li, 9^{9}Be, 13^{13}C and 16^{16}O

    Full text link
    An experimental study of the Kstop−A→Σ−pA′K^-_{stop}A\rightarrow \Sigma^- p A' reaction on A=6A=^6Li, 7^7Li, 9^9Be, 13^{13}C and 16^{16}O pp-shell nuclei is presented. The data were collected by the FINUDA spectrometer operating at the DAΦ\PhiNE ϕ\phi-factory (LNF-INFN, Italy). Emission rates for the reaction in the mentioned nuclei are measured and compared with the few existing data. The spectra of several observables are discussed; indications of Quasi-Free absorptions by a (np)(np) pair embedded in the AA nucleus can be obtained from the study of the missing mass distributions.Comment: Version accepted by PR

    Performance of HPGe Detectors in High Magnetic Fields

    Full text link
    A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN magnet at GSI. No significant degradation of the energy resolution was found, and a change in the rise time distribution of the pulses from preamplifiers was observed. A correlation between rise time and pulse height was observed and is used to correct the measured energy, recovering the energy resolution almost completely. Moreover, no problems in the electronics due to the magnetic field were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9 figure

    Recanalization of chronically occluded aortocoronary saphenous vein bypass grafts by extended infusion of urokinase: Initial results and short-term clinical follow-up

    Get PDF
    AbstractChronic occlusion of saphenous vein aortocoronary bypass grafts is a common problem. Although percutaneous transluminal angioplasty of a saphenous vein with a stenotic lesion is feasible, angioplasty alone of a totally occluded vein graft yields uniformly poor results. Patients with such occlusion are often subjected to repeat aortocoronary bypass surgery. Experience with a new technique that allows angioplasty to be performed in a totally occluded saphenous vein bypass graft is reported. This technique utilizes infusion of prolonged low dose urokinase directly into the proximal portion of the occluded graft.Forty-six consecutive patients with 47 totally occluded grafts were studied. Patients had undergone end to side saphenous vein bypass grafting 1 to 13 (mean 7) years previously. All patients presented with new or worsening angina pectoris with ST-T changes or non-Q wave acute myocardial infarction and all had a totally occluded saphenous vein bypass graft. The new technique entailed the positioning of an angiographic catheter into the stub of the occluded graft and the advancement of an infusion wire into the graft. Patients were returned to the coronary care unit, where urokinase was delivered at a dose of 100,000 to 250,000 U/h. The total dose of urokinase ranged from 0.7 to 9.8 million U over 7.5 to 77 h (mean 31). After therapy, recanalization was seen in 37 (79%) of the 47 grafts.In 20 successfully treated patients, angiography was performed 1 to 24 (mean 11) months after treatment; 13 (65%) of these grafts were patent. It is concluded that direct, extended, low dose infusion of urokinase in a totally occluded saphenous vein bypass graft offers a promising alternative to repeat bypass surgery

    A study of the proton spectra following the capture of K−K^- in 6^6Li and 12^{12}C with FINUDA

    Get PDF
    Momenta spectra of protons emitted following the capture of K−K^- in 6^6Li and 12^{12}C have been measured with 1% resolution. The 12^{12}C spectrum is smooth whereas for 6^6Li a well defined peak appears at about 500 MeV/cc. The first observation of a structure in this region was identified as a strange tribaryon or, possibly, a Kˉ\bar K-nuclear state. The peak is correlated with a π−\pi^- coming from Σ−\Sigma^- decay in flight, selected by setting momenta larger than 275 MeV/cc. The Σ−\Sigma^- could be produced, together with a 500 MeV/cc proton, by the capture of a K−K^- in a deuteron-cluster substructure of the 6^6Li nucleus. The capture rate for such a reaction is (1.62\pm 0.23_{stat} ^{+0.71}_{-0.44}(sys))%/K^-_{stop}, in agreement with the existing observations on 4^4He targets and with the hypothesis that the 6^6Li nucleus can be interpreted as a (d+α)(d+\alpha) cluster.Comment: 21 pages, 10 figures. Accepted for publication in NP
    • …
    corecore