3,631 research outputs found

    An integrated approach to rotorcraft human factors research

    Get PDF
    As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results

    The initial conditions of the universe: how much isocurvature is allowed?

    Full text link
    We investigate the constraints imposed by the current data on correlated mixtures of adiabatic and non-adiabatic primordial perturbations. We discover subtle flat directions in parameter space that tolerate large (~60%) contributions of non-adiabatic fluctuations. In particular, larger values of the baryon density and a spectral tilt are allowed. The cancellations in the degenerate directions are explored and the role of priors elucidated.Comment: 4 pages, 4 figures. Submitted to PR

    Constraints on isocurvature models from the WMAP first-year data

    Full text link
    We investigate the constraints imposed by the first-year WMAP CMB data extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and by the LSS data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurvature modes. A flat universe with CDM and Lambda is assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic mode and one, two, and three isocurvature modes, with intermode cross-correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross-correlations are allowed, these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross-correlations are allowed, the admissible isocurvature fraction rises to 57+-9 per cent. The sensitivity of the results to the choice of prior probability distribution is examined.Comment: 20 pages, 24 figures. Submitted to PR

    Towards a typology of spatial relations and properties for urban applications

    Get PDF
    Relations that occur between features located in space–like the fact that a street is surrounded by very high buildings, that an airport is close to a city- as well as spatial properties of features–like the height and width of a door- play an important role for many urban applications. Digital models of cities can assist in the evaluation of these relations and properties either through visualisation or through computation, mainly based on geometrical information. Hence, considering the objective of explaining to potential users of these city models what useful information they can derive from these data and how, a possible way to address this objective lies in the usage of a pivot model composed of relevant spatial properties and relations, connected to information meaningful to the user and connected to the possible computation of them on available data. This paper firstly sets the ground for a typology of such relevant relations and properties that are shared by different applications and that can be derived/approximated from existing data. It then proposes a model to describe these properties and relations and connect them to their possible computation based on data (2D or 3D). An important aspect of this model is to distinguish between a conceptual layer where relations occur between “real world” features and an implementation layer where they are calculated based on database features and geometries

    Using SFOC to fly the Magellan Venus mapping mission

    Get PDF
    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending

    Thermo-mechanical behaviour of a compacted swelling clay

    Get PDF
    Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure induces either swelling or contraction. The results from compression tests at constant suction and temperature evidenced that at lower suction, the yield pressure was lower, the elastic compressibility parameter and the plastic compressibility parameter were higher. On the other hand, at a similar suction, the yield pressure was slightly influenced by the temperature; and the compressibility parameters were insensitive to temperature changes. The thermal hardening phenomenon was equally evidenced by following a thermo-mechanical path of loading-heating-cooling-reloading

    Singular behaviour of the electromagnetic field

    Full text link
    The singularities of the electromagnetic field are derived to include all the point-like multipoles representing an electric charge and current distribution. Firstly derived in the static case, the result is generalized to the dynamic one. We establish a simple procedure for passing from the first, to the second case.Comment: Latex, 21.pages, no figure

    The dynamical viability of scalar-tensor gravity theories

    Full text link
    We establish the dynamical attractor behavior in scalar-tensor theories of dark energy, providing a powerful framework to analyze classes of theories, predicting common evolutionary characteristics that can be compared against cosmological constraints. In the Jordan frame the theories are viewed as a coupling between a scalar field, \Phi, and the Ricci scalar, R, F(\Phi)R. The Jordan frame evolution is described in terms of dynamical variables m \equiv d\ln F/d\ln \Phi and r \equiv -\Phi F/f, where F(\Phi) = d f(\Phi)/d\Phi. The evolution can be alternatively viewed in the Einstein frame as a general coupling between scalar dark energy and matter, \beta. We present a complete, consistent picture of evolution in the Einstein and Jordan frames and consider the conditions on the form of the coupling F and \beta required to give the observed cold dark matter (CDM) dominated era that transitions into a late time accelerative phase, including transitory accelerative eras that have not previously been investigated. We find five classes of evolutionary behavior of which four are qualitatively similar to those for f(R) theories (which have \beta=1/2). The fifth class exists only for |\beta| < \sqrt{3}/4, i.e. not for f(R) theories. In models giving transitory late time acceleration, we find a viable accelerative region of the (r,m) plane accessible to scalar-tensor theories with any coupling, \beta (at least in the range |\beta| \leq 1/2, which we study in detail), and an additional region open only to theories with |\beta| < \sqrt{3}/4.Comment: 24 pages, 3 figure
    • …
    corecore