18 research outputs found

    On the Effect of Hot Rolling on Inclusion Size and Distribution in a Cast AISI 1070 Steel Railroad Wheel

    Get PDF
    The goal of this work is to examine the effect of hot deformation on shrinkage porosity and nonmetallic inclusions in an AISI 1070 grade steel industrially produced wheel casting. Steel cleanliness is an important consideration as it influences the mechanical properties of the final product. A high density of porosity and inclusions have been shown to be detrimental for mechanical properties, especially during hot rolling. Using a laboratory-scale rolling mill, cast preforms were subjected to a 66% cumulative reduction to determine the effect of thermomechanical processing on void closure and inclusions that may produce anisotropy in mechanical properties. Quantitative automated feature analysis, AFA, of inclusion type, size, morphology, and distribution was conducted utilizing an Aspex PICA 1020 scanning electron microscope to determine differences in inclusions and shrinkage porosity in the as-cast and as-rolled conditions. The results were compared with previously reported impact toughness values which indicated a trend with MnS projected length and average impact toughness in the T-L orientation. Reduction in shrinkage porosity was also verified utilizing 3D micro-X-ray CT scans. The AFA results showed a decrease in shrinkage porosity from 177 ppm in the as-cast condition to less than 35 ppm after rolling. Pores were in general much smaller and widely distributed after hot rolling and this would suggest improved impact properties. Analysis of nonmetallic inclusions revealed three primary categories of inclusions that included MnS, Al2O3, and complex inclusions that mainly consisted of MnS with an Al2O3 core, with small quantities of mixed silicates of Mn and Al and calcium aluminates (CaAl2O4)

    Analysis of Hot- and Cold-Rolled Loads in Medium-Mn TRIP Steels

    No full text
    The purpose of this work is to investigate the hot- and cold-rolling requirements to produce third-generation advanced high-strength steels (AHSS). Therefore, five medium-Mn (10 to 14 wt pct Mn) alloys that exhibit transformation-induced plasticity (TRIP) were compared to a commercially produced grade of AISI 1018 using hot- and cold-rolling experiments. Experimental data collected from a STANAT instrumented rolling mill was utilized to measure force and torque during hot- and cold-rolling. Experimental data were processed by a 1D analytical model, based on Orowan model, to determine rolling pressure. It was determined that pressures required to hot-roll TRIP alloys are 1.4 to 1.8 times greater than pressures for rolling AISI 1018 steel. Cold rolling of the medium-Mn TRIP steels was found to be 1.5 to 2.8 times greater than the AISI 1018 steel. Mechanical and microstructural characterization was also performed and the variation in rolling pressure was related to the starting microstructural constituents, and alloys containing greater starting quantities of ε-martensite in the microstructure had higher flow stresses at equivalent rolling strains during cold rolling

    On the Effect of Hot Rolling on Inclusion Size and Distribution in a Cast AISI 1070 Steel Railroad Wheel

    Get PDF
    The goal of this work is to examine the effect of hot deformation on shrinkage porosity and nonmetallic inclusions in an AISI 1070 grade steel industrially produced wheel casting. Steel cleanliness is an important consideration as it influences the mechanical properties of the final product. A high density of porosity and inclusions have been shown to be detrimental for mechanical properties, especially during hot rolling. Using a laboratory-scale rolling mill, cast preforms were subjected to a 66% cumulative reduction to determine the effect of thermomechanical processing on void closure and inclusions that may produce anisotropy in mechanical properties. Quantitative automated feature analysis, AFA, of inclusion type, size, morphology, and distribution was conducted utilizing an Aspex PICA 1020 scanning electron microscope to determine differences in inclusions and shrinkage porosity in the as-cast and as-rolled conditions. The results were compared with previously reported impact toughness values which indicated a trend with MnS projected length and average impact toughness in the T-L orientation. Reduction in shrinkage porosity was also verified utilizing 3D micro-X-ray CT scans. The AFA results showed a decrease in shrinkage porosity from 177 ppm in the as-cast condition to less than 35 ppm after rolling. Pores were in general much smaller and widely distributed after hot rolling and this would suggest improved impact properties. Analysis of nonmetallic inclusions revealed three primary categories of inclusions that included MnS, Al2O3, and complex inclusions that mainly consisted of MnS with an Al2O3 core, with small quantities of mixed silicates of Mn and Al and calcium aluminates (CaAl2O4)

    Study of Steady Cavitation Assumptions in Strain-Rate-Sensitive Solids for Rigid Projectile Penetrations

    No full text
    Spherical cavity expansion is a well-known theory used to develop penetration models and failure analysis on solids. However, some limitations of this theory have been found, especially when complex materials have been tried to model. In this paper, steady cavitation assumptions are studied for strain-rate-sensitive solids, in order to apply cavity-expansion results to the penetration of rigid projectiles. In this way, this paper is the continuation of our previous paper, where an engineering penetration model was formulated using the dynamic spherical cavity-expansion theory for an elasto-plastic, compressible, Cowper—Symonds solid. In the present work, the assumption of self-similarity transformation was studied and verified for rigid projectile penetration in strain-rate-sensitive solids. The cavity-expansion problem was studied by finite-element simulations performed in ANSYS/AUTODYN for semi-infinite 6061-T651 Al plates. Additionally, engineering and computational penetration models were compared for different M300 steel spheres impacting the semi-infinite 6061-T651 Al targets. It was found that self-similarity transformation cannot be applied to strain-rate-sensitive solids; however, if the spherical cavity is constant, as in a rigid projectile penetration event, assumptions of steady stresses are valid, and the self-similarity transformation can be applied at medium and low penetration velocities

    Estudo comparativo da resistência ao desgaste abrasivo do revestimento de três ligas metálicas utilizadas na indústria, aplicadas por soldagem com arames tubulares Comparative study of the wear resistance of three metal cored wire welded coatings used in industry

    No full text
    As ligas metálicas aplicadas por soldagem em superfícies, objetivando a proteção contra o desgaste e o conseqüente aumento da vida útil de peças e equipamentos, têm sido utilizadas em larga escala nas indústrias de bens de consumo e nos setores de mineração e sucroalcooleiro. O desgaste abrasivo em peças e equipamentos representa, nestas industriais, um dos principais fatores de depreciação de capital e uma importante fonte de despesas com manutenção. Para a aplicação do revestimento por soldagem, os arames tubulares têm sido uma alternativa cada vez mais viável, devido à sua alta produtividade e qualidade de solda, substituindo, em parte, o uso do eletrodo revestido. O objetivo deste trabalho é fazer um estudo comparativo da resistência ao desgaste abrasivo do revestimento aplicado por soldagem com arames tubulares autoprotegidos de três ligas metálicas utilizadas na indústria, uma do tipo Fe-Cr-C, outra do tipo Fe-Cr-C com adição de nióbio e boro e a terceira, do tipo Fe-Cr-C com adição de nióbio. Os revestimentos anti-desgaste, conhecidos como revestimento duro, foram aplicados em chapas de aço carbono, com os mesmos parâmetros e procedimentos de soldagem. Os corpos de prova foram obtidos por corte e retificação e foram submetidos a ensaios de desgaste abrasivo, em um abrasômero Roda de Borracha, conforme procedimento estabelecido pela norma ASTM G65-91. Os resultados obtidos demonstraram que a liga Fe-Cr-C com adição de Nióbio e Boro apresentou desempenho superior em relação ao desgaste abrasivo.<br>The metal alloys deposited by welding on the components surface, with the objective of protection against wear and the consequent increase in the lifetime of parts and equipments, have been used extensively in the consumer products industry and sectors of Mining and Sugar & alcohol. The abrasive wear on parts and equipments represents one of the main depreciation factors of capital and the major source of expenditure on maintenance in industries. For the application of the coating by welding, cored wire have been a viable alternative, because of its high productivity and high weld quality, replacing in part, the use of the stick electrode. The objective of this work is to make a comparative study of the abrasive wear resistant coating deposited by welding with selfshielded cored wires of three metal alloys used in industry, first the Fe-Cr-C alloy, the second the Fe-Cr-C alloy with niobium and boron addition, and the third the Fe-Cr-C with niobium addition. The wear resistant coatings, known as hardfacing were deposited on carbon steel plates, with the same parameters and procedures of welding. The samples were obtained by cutting and grinding and were subjected to abrasive wear tests, in a Rubber Wheel apparatus, according to procedure established by ASTM G65-91. The results showed that the Fe-Cr-C alloy with Niobium and Boron addition presented superiority in terms of wear resistence
    corecore