85 research outputs found

    Analysis of interactions between ribosomal proteins and RNA structural motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One important goal of structural bioinformatics is to recognize and predict the interactions between protein binding sites and RNA. Recently, a comprehensive analysis of ribosomal proteins and their interactions with rRNA has been done. Interesting results emerged from the comparison of r-proteins within the small subunit in <it>T. thermophilus </it>and <it>E. coli</it>, supporting the idea of a core made by both RNA and proteins, conserved by evolution. Recent work showed also that ribosomal RNA is modularly composed. Motifs are generally single-stranded sequences of consecutive nucleotides (ssRNA) with characteristic folding. The role of these motifs in protein-RNA interactions has been so far only sparsely investigated.</p> <p>Results</p> <p>This work explores the role of RNA structural motifs in the interaction of proteins with ribosomal RNA (rRNA). We analyze composition, local geometries and conformation of interface regions involving motifs such as tetraloops, kink turns and single extruded nucleotides. We construct an interaction map of protein binding sites that allows us to identify the common types of shared 3-D physicochemical binding patterns for tetraloops. Furthermore, we investigate the protein binding pockets that accommodate single extruded nucleotides either involved in kink-turns or in arbitrary RNA strands. This analysis reveals a new structural motif, called <it>tripod</it>.</p> <p>It corresponds to small pockets consisting of three aminoacids arranged at the vertices of an almost equilateral triangle. We developed a search procedure for the recognition of tripods, based on an empirical tripod fingerprint.</p> <p>Conclusion</p> <p>A comparative analysis with the overall RNA surface and interfaces shows that contact surfaces involving RNA motifs have distinctive features that may be useful for the recognition and prediction of interactions.</p

    Tensor Decomposition Reveals Concurrent Evolutionary Convergences and Divergences and Correlations with Structural Motifs in Ribosomal RNA

    Get PDF
    Evolutionary relationships among organisms are commonly described by using a hierarchy derived from comparisons of ribosomal RNA (rRNA) sequences. We propose that even on the level of a single rRNA molecule, an organism's evolution is composed of multiple pathways due to concurrent forces that act independently upon different rRNA degrees of freedom. Relationships among organisms are then compositions of coexisting pathway-dependent similarities and dissimilarities, which cannot be described by a single hierarchy. We computationally test this hypothesis in comparative analyses of 16S and 23S rRNA sequence alignments by using a tensor decomposition, i.e., a framework for modeling composite data. Each alignment is encoded in a cuboid, i.e., a third-order tensor, where nucleotides, positions and organisms, each represent a degree of freedom. A tensor mode-1 higher-order singular value decomposition (HOSVD) is formulated such that it separates each cuboid into combinations of patterns of nucleotide frequency variation across organisms and positions, i.e., β€œeigenpositions” and corresponding nucleotide-specific segments of β€œeigenorganisms,” respectively, independent of a-priori knowledge of the taxonomic groups or rRNA structures. We find, in support of our hypothesis that, first, the significant eigenpositions reveal multiple similarities and dissimilarities among the taxonomic groups. Second, the corresponding eigenorganisms identify insertions or deletions of nucleotides exclusively conserved within the corresponding groups, that map out entire substructures and are enriched in adenosines, unpaired in the rRNA secondary structure, that participate in tertiary structure interactions. This demonstrates that structural motifs involved in rRNA folding and function are evolutionary degrees of freedom. Third, two previously unknown coexisting subgenic relationships between Microsporidia and Archaea are revealed in both the 16S and 23S rRNA alignments, a convergence and a divergence, conferred by insertions and deletions of these motifs, which cannot be described by a single hierarchy. This shows that mode-1 HOSVD modeling of rRNA alignments might be used to computationally predict evolutionary mechanisms

    Structural Constraints Identified with Covariation Analysis in Ribosomal RNA

    Get PDF
    Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC) for quantifying positional covariation with the Gutell lab’s new RNA Comparative Analysis Database (rCAD). The PEC and MI-based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have been identified. Analysis presented herein and at the Gutell lab’s Comparative RNA Web (CRW) Site reveal that the majority of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair

    A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly

    Get PDF
    Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins

    The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum

    Get PDF
    The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis.The identification of 14 additional small mitochondrial transcripts from P. falciparum and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome.All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered

    Novel high-rank phylogenetic lineages within a sulfur spring (Zodletone Spring, Oklahoma), revealed using a combined pyrosequencing-Sanger approach

    Get PDF
    The utilization of high-throughput sequencing technologies in 16S rRNA gene-based diversity surveys has indicated that within most ecosystems, a significant fraction of the community could not be assigned to known microbial phyla. Accurate determination of the phylogenetic affiliation of such sequences is difficult due to the short-read-length output of currently available high-throughput technologies. This fraction could harbor multiple novel phylogenetic lineages that have so far escaped detection. Here we describe our efforts in accurate assessment of the novelty and phylogenetic affiliation of selected unclassified lineages within a pyrosequencing data set generated from source sediments of Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma. Lineage-specific forward primers were designed for 78 putatively novel lineages identified within the pyrosequencing data set, and representative nearly full-length small-subunit (SSU) rRNA gene sequences were obtained by pairing those primers with reverse universal bacterial primers. Of the 78 lineages tested, amplifiable products were obtained for 52, 32 of which had at least one nearly full-length sequence that was representative of the lineage targeted. Analysis of phylogenetic affiliation of the obtained Sanger sequences identified 5 novel candidate phyla and 10 novel candidate classes (within Fibrobacteres, Planctomycetes, and candidate phyla BRC1, GN12, TM6, TM7, LD1, WS2, and GN06) in the data set, in addition to multiple novel orders and families. The discovery of multiple novel phyla within a pilot study of a single ecosystem clearly shows the potential of the approach in identifying novel diversities within the rare biosphere.Peer reviewedMicrobiology and Molecular Genetic

    Phasing the 30S ribosomal subunit structure

    No full text
    • …
    corecore