58 research outputs found

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy

    Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen

    Get PDF
    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.The research leading to these results has received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement Nu 241500 (BuruliVac), from Fundacao Calouste Gulbenkian and from Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). JBG, TGM and AGF had a personal grant from the Portuguese Science and Technology Foundation (FCT) (SFRH/BD/33573/2009, SFRH/BD/41598/2007 and SFRH/BPD/68547/2010, respectively). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Programmed cell death and its role in inflammation

    Get PDF
    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases

    BIOLOGICAL STUDIES OF 4-AMINO BENZAMIDE DERIVED 1,2,3-TRIAZOLE LINKED CHALCONE AND ITS PYRAZOLINE DERIVATIVES

    No full text
    Objectives: The present work planned to investigate the anti-bacterial, anti-fungal, and anti-oxidant activity against 4-amino benzamide derived 1,2,3-triazole linked chalcone and pyrazoline derivatives. Methods: Anti-microbial activity for pyrazoline derivatives was accomplished by serial dilution method. The test organisms of bacterial strains were (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas fluorescence) and the fungal cultures (Aspergillus niger, Aspergillus terreus, and Trichoderma harzanium). The method used in the anti-oxidant activity is 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide scavenging method. Results: All the compounds showed good to moderate anti-bacterial and anti-fungal activities. The results of IC50 values showed lower potent inhibition activity with DPPH and higher potent inhibition activity in nitric oxide scavenging method. Conclusion: All the compounds had exhibited capricious growth inhibitory effect on anti-bacterial, anti-fungal, and anti-oxidant activities

    Chronic (-) deprenyl administration increases dendritic arborization in CA3 neurons of hippocampus and AChE activity in specific regions of the primate brain

    No full text
    The mechanism by which (-) deprenyl enhances cognitive function in Alzheimer's disease (AD) is not yet understood. (-) Deprenyl (0.2 mg/kg/day) was administered intramuscularly to adult male monkeys (n = 6) for 25 days. Control monkeys (n = 6) received physiological saline by the same route. The activity of acetylcholinesterase (AChE) in different brain regions and the dendritic arborization in CA3 pyramidal neurons of hippocampus were analysed, (-) Deprenyl-treated monkeys showed a significant increase in the AChE activity by 43% (p < 0.001) in the frontal cortex, by 39% (p < 0.025) in the motor cortex, by 66% (p < 0.001) in the hippocampus and by 26% (p < 0.05) in the striatum compared to controls. The branching points and the intersections of both apical and basal dendrites of CA3 hippocampal pyramidal neurons were also significantly increased in (-) deprenyl-treated monkeys. Enhanced AChE activity may increase dendritic arborization in the hippocampus and it may also play a role in improving cognitive functions observed in AD, following(-) deprenyl treatment

    Synthesis, characterization, EPR and thermoluminescence properties of CaTiO3 nanophosphor

    No full text
    Calcium titanate (CaTiO3) nanophosphors were synthesized by three different routes namely solution combustion (SC), modified solid-state reaction (MSS) and solid-state (SS) methods. Rietveld refinement studies revealed the presence of an orthorhombic structure with traces of CaCO3. The crystallite sizes were found to be in the 43-45 nm range. TEM studies also confirm the nano size with well crystalline nature. EPR spectrum for SS method exhibits a broad resonance signal at g = 2.027 is attributed to TiO6](9-) center, whereas in MSS sample the resonance signals are attributed to surface electron and hole trapping sites. The TL behavior has been investigated for the first time using gamma-irradiation. TL glow peak at 169 degrees C were recorded in CaTiO3 prepared by SC, MSS and SS methods. The trapping parameters such as activation energy (E) and order of kinetics (b) were estimated using peak shape method and results are discussed in detail. (C) 2013 Elsevier Ltd. All rights reserved
    corecore