8 research outputs found
Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey
In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process
Nanotechnology and Plant Extracts as a Future Control Strategy for Meat and Milk Products
Plant extracts, well known for their antibacterial and antioxidant activity, have potential to be widely used preservatives in the food industry as natural alternatives to numerous synthetic additives which have adverse impacts on health and the environment. Most plant compounds and extracts are generally recognized as safe (GRAS). The use of preservatives is of great importance for perishable foods such as meat and milk, which, along with their products, are commonly consumed food items globally. However, the bioavailability of plant compounds could be diminished by their interaction with food components, processing, and storage. Nanoencapsulation of plant extracts, especially essential oils, is an effective method for their application in food model systems. This technique increases the bioactivity of plant compounds by increasing their physical stability and reducing their size, without negative effects on organoleptic properties. Furthermore, a recent study showed that plant extracts act as good bioreductants for biosynthesis of nanoparticles. This so-called green synthesis method using plant extracts is a rapid, relatively inexpensive, safe, and efficient method for synthesis of nanoparticles including silver, gold, iron, lead, copper, cobalt, palladium, platinum, zinc, zinc oxide, titanium oxide, magnetite, and nickel. Some of these nanoparticles have antimicrobial potential which is why they are of great interest to the food industry. In this chapter, the nanoencapsulation of plant extracts and plant extract-mediated synthesis of nanoparticles and their potential application in order to improve the safety and quality and prolong the shelf life of meat and milk products are reviewed and discussed