6 research outputs found

    Evaluating the thermal comfort performance of heating systems using a thermal manikin with human thermoregulatory control

    Get PDF
    © International Society of the Built Environment. © The Author(s) 2014. The evaluation of the local thermal comfort and application of thermal manikins can further assist the design and selection of heating systems. This study aimed at evaluating the thermal comfort performance of different heating systems using a newly developed thermal manikin with an enhanced thermal control. The heating systems for a workstation, included a conventional radiator (convector) mounted under the window, heated floor in the occupied zone and an infrared heater mounted to the ceiling. The experiments were conducted in a test room with a façade attached to a climate chamber to simulate outdoor winter conditions. In these experiments, the supplied power for the different systems was kept constant to independently quantify the differences in their thermal comfort performance at same energy consumption. The thermal manikin was deployed in the occupied zone to evaluate the local and overall thermal comfort under each system using the equivalent temperature (Teq) approach. The thermoregulatory control used in the manikin operation is based on a model of human thermoregulation that interacts accurately with the surrounding environment through real-time measurements. The results showed that at the same energy consumption of the different systems, the variations in local thermal comfort levels were up to 1 on the comfort scale

    The validity of the index of vulnerable homes : evidence from consumers vulnerable to energy poverty in the UK

    Get PDF
    Energy poverty is a multidimensional issue, and this means that it is difficult to understand the different levels of vulnerability to this phenomenon and its relationship with households’ quality of life. This paper presents the validation of an innovative index for the analysis of vulnerability to energy poverty according to monetary, energy and thermal comfort factors: The Index of Vulnerable Homes (IVH). The IVH goes beyond the use of single self-reported indicators of thermal comfort, and instead uses the adaptive thermal-comfort model defined in the normative UNE EN 15251:2007 to assess thermal comfort in relation to energy poverty. Furthermore, it has the potential to evaluate societal impacts of current energy poverty policies by providing the economic analysis of different situations of vulnerability. The IVH is validated by comparing its results to those obtained from a survey conducted in a small-scale study undertaken in Salford, UK. To this end, evidence from households living in terraced houses built before 1980 is used to analyse health status in terms of vulnerability to energy poverty vulnerability according to their monetary situation and the characteristics of the dwelling. In the end, the results show good agreement between both the IVH’s assessment and households’ evidence, leading to consider the IVH as a suitable approach to understanding different levels of vulnerability to energy poverty
    corecore