501 research outputs found

    The Geometry of D=11 Null Killing Spinors

    Full text link
    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008.Comment: 30 pages, typos corrected, reference added, new solution included in section 5.1; uses JHEP3.cl

    Kappa symmetry, generalized calibrations and spinorial geometry

    Full text link
    We extend the spinorial geometry techniques developed for the solution of supergravity Killing spinor equations to the kappa symmetry condition for supersymmetric brane probe configurations in any supergravity background. In particular, we construct the linear systems associated with the kappa symmetry projector of M- and type II branes acting on any Killing spinor. As an example, we show that static supersymmetric M2-brane configurations which admit a Killing spinor representing the SU(5) orbit of Spin(10,1)Spin(10,1) are generalized almost hermitian calibrations and the embedding map is pseudo-holomorphic. We also present a bound for the Euclidean action of M- and type II branes embedded in a supersymmetric background with non-vanishing fluxes. This leads to an extension of the definition of generalized calibrations which allows for the presence of non-trivial Born-Infeld type of fields in the brane actions.Comment: 9 pages, latex, references added and minor change

    Spacetime singularity resolution by M-theory fivebranes: calibrated geometry, Anti-de Sitter solutions and special holonomy metrics

    Full text link
    The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: K\"{a}hler cycles in Calabi-Yau two-, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G2G_2 manifolds; complex lagrangian four-cycles in Sp(2)Sp(2) manifolds; and Cayley four-cycles in Spin(7)Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G2G_2 metrics on an R4\mathbb{R}^4 bundle over S3S^3, and an R3\mathbb{R}^3 bundle over S4S^4 or CP2\mathbb{CP}^2; the Calabi hyper-K\"{a}hler metric on TCP2T^*\mathbb{CP}^2; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7)Spin(7) metric on an R4\mathbb{R}^4 bundle over S4S^4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.Comment: 1+52 page

    The Geometry of D=11 Killing Spinors

    Get PDF
    We propose a way to classify all supersymmetric configurations of D=11 supergravity using the G-structures defined by the Killing spinors. We show that the most general bosonic geometries admitting a Killing spinor have at least a local SU(5) or an (Spin(7)\ltimes R^8)x R structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the former case we determine what kind of local SU(5) structure is present and show that almost all of the form of the geometry is determined by the structure. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D=11 Godel solution.Comment: 36 pages. Typos corrected and discussion on G-structures improved. Final version to appear in JHE

    N=31, D=11

    Get PDF
    We show that eleven-dimensional supergravity backgrounds with thirty one supersymmetries, N=31, admit an additional Killing spinor and so they are locally isometric to maximally supersymmetric ones. This rules out the existence of simply connected eleven-dimensional supergravity preons. We also show that N=15 solutions of type I supergravities are locally isometric to Minkowski spacetime.Comment: 17 page

    On the absence of BPS preonic solutions in IIA and IIB supergravities

    Get PDF
    We consider the present absence of 31 out of 32 supersymmetric solutions in supergravity i.e., of solutions describing BPS preons. A recent result indicates that (bosonic) BPS preonic solutions do not exist in type IIB supergravity. We reconsider this analysis by using the G-frame method, extend it to the IIA supergravity case, and show that there are no (bosonic) preonic solutions for type IIA either. For the classical D=11 supergravity no conclusion can be drawn yet, although the negative IIA results permit establishing the conditions that preonic solutions would have to satisfy. For supergravities with `stringy' corrections, the existence of BPS preonic solutions remains fully open.Comment: plain latex, 12 pages Minor misprints corrected. Published in JHEP 09 (2006) 00

    Generalised G2G_2-manifolds

    Full text link
    We define new Riemannian structures on 7-manifolds by a differential form of mixed degree which is the critical point of a (possibly constrained) variational problem over a fixed cohomology class. The unconstrained critical points generalise the notion of a manifold of holonomy G2G_2, while the constrained ones give rise to a new geometry without a classical counterpart. We characterise these structures by the means of spinors and show the integrability conditions to be equivalent to the supersymmetry equations on spinors in supergravity theory of type IIA/B with bosonic background fields. In particular, this geometry can be described by two linear metric connections with skew torsion. Finally, we construct explicit examples by using the device of T-duality.Comment: 27 pages. v2: references added. v3: wrong argument (Theorem 3.3) and example (Section 4.1) removed, further examples added, notation simplified, all comments appreciated. v4:computation of Ricci tensor corrected, various minor changes, final version of the paper to appear in Comm. Math. Phy

    The holonomy of the supercovariant connection and Killing spinors

    Full text link
    We show that the holonomy of the supercovariant connection for M-theory backgrounds with NN Killing spinors reduces to a subgroup of SL(32-N,\bR)\st (\oplus^N \bR^{32-N}). We use this to give the necessary and sufficient conditions for a background to admit NN Killing spinors. We show that there is no topological obstruction for the existence of up to 22 Killing spinors in eleven-dimensional spacetime. We investigate the symmetry superalgebras of supersymmetric backgrounds and find that their structure constants are determined by an antisymmetric matrix. The Lie subalgebra of bosonic generators is related to a real form of a symplectic group. We show that there is a one-one correspondence between certain bases of the Cartan subalgebra of sl(32, \bR) and supersymmetric planar probe M-brane configurations. A supersymmetric probe configuration can involve up to 31 linearly independent planar branes and preserves one supersymmetry. The space of supersymmetric planar probe M-brane configurations is preserved by an SO(32,\bR) subgroup of SL(32, \bR).Comment: 27 pages, a key reference was added. v3: minor change
    corecore