30 research outputs found

    Educational neuroscience: progress and prospects

    Get PDF
    Educational neuroscience is an interdisciplinary research field that seeks to translate research findings on neural mechanisms of learning to educational practice and policy, and to understand the effects of education on the brain. Neuroscience and education can interact directly, by virtue of considering the brain as a biological organ that needs to be in the optimal condition to learn (‘brain health’); or indirectly, as neuroscience shapes psychological theory and psychology influences education. In this article, we trace the origins of educational neuroscience, its main areas of research activity, and the principal challenges it faces as a translational field. We consider how a pure psychology approach that ignores neuroscience is at risk of being misleading for educators. We address the major criticisms of the field, respectively comprising a priori arguments against the relevance of neuroscience to education, reservations with the current practical operation of the field, and doubts about the viability of neuroscience methods for diagnosing disorders or predicting individual differences. We consider future prospects of the field and ethical issues it raises. Finally, we discuss the challenge of responding to the (welcome) desire of education policymakers to include neuroscience evidence in their policymaking, while ensuring recommendations do not exceed the limitations of current basic science

    Towards an understanding of neuroscience for science educators

    Get PDF
    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm
    corecore