9,881 research outputs found

    Elementary solution to the time-independent quantum navigation problem

    Get PDF
    A quantum navigation problem concerns the identification of a time-optimal Hamiltonian that realizes a required quantum process or task, under the influence of a prevailing ‘background’ Hamiltonian that cannot be manipulated. When the task is to transform one quantum state into another, finding the solution in closed form to the problem is nontrivial even in the case of timeindependent Hamiltonians. An elementary solution, based on trigonometric analysis, is found here when the Hilbert space dimension is two. Difficulties arising from generalizations to higher-dimensional systems are discussed

    Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian

    Full text link
    The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction

    Operator-valued zeta functions and Fourier analysis

    Get PDF
    The Riemann zeta function ζ(s)\zeta(s) is defined as the infinite sum ∑n=1∞n−s\sum_{n=1}^\infty n^{-s}, which converges when Re s>1{\rm Re}\,s>1. The Riemann hypothesis asserts that the nontrivial zeros of ζ(s)\zeta(s) lie on the line Re s=12{\rm Re}\,s= \frac{1}{2}. Thus, to find these zeros it is necessary to perform an analytic continuation to a region of complex ss for which the defining sum does not converge. This analytic continuation is ordinarily performed by using a functional equation. In this paper it is argued that one can investigate some properties of the Riemann zeta function in the region Re s<1{\rm Re}\,s<1 by allowing operator-valued zeta functions to act on test functions. As an illustration, it is shown that the locations of the trivial zeros can be determined purely from a Fourier series, without relying on an explicit analytic continuation of the functional equation satisfied by ζ(s)\zeta(s).Comment: 8 pages, version to appear in J. Pays.

    Accrediting and the Sherman Act

    Get PDF
    The shortcomings of the Sherman Act as it relates to private accrediting are examined in order to assist courts in minimizing the anticompetitive features of accreditation and maximizing its procompetitive benefits. A lack of clear legal principles to guide factual analysis and to facilitate the granting of summary judgment in appropriate cases has led to unfocused and protracted litigation

    Note on exponential families of distributions

    Full text link
    We show that an arbitrary probability distribution can be represented in exponential form. In physical contexts, this implies that the equilibrium distribution of any classical or quantum dynamical system is expressible in grand canonical form.Comment: 5 page

    Photoproduction of K^+ Mesons in Hydrogen

    Get PDF
    The photoproduction of K^+ mesons in hydrogen has been measured with the purpose of extending the previous CalTech measurements to smaller angles, and obtaining better absolute values for the cross sections. The technique of Donoho and Walker, using a magnetic spectrometer and a time-of-flight measurement to detect the K^+ mesons, was modified so as to achieve a better discrimination against pions and scattered protons. The results obtained are in fairly good agreement with the more extensive measurements made at Cornell by a somewhat different method

    Must a Hamiltonian be Hermitian?

    Get PDF
    A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but instead satisfies the physical condition of space-time reflection symmetry (PT symmetry). Thus, there are infinitely many new Hamiltonians that one can construct that might explain experimental data. One would think that a quantum theory based on a non-Hermitian Hamiltonian violates unitarity. However, if PT symmetry is not broken, it is possible to use a previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose associated norm is positive definite. This construction is general and works for any PT-symmetric Hamiltonian. The dynamics is governed by unitary time evolution. This formulation does not conflict with the requirements of conventional quantum mechanics. There are many possible observable and experimental consequences of extending quantum mechanics into the complex domain, both in particle physics and in solid state physics.Comment: Revised version to appear in American Journal of Physic
    • …
    corecore