77 research outputs found

    Jain States in a Matrix Theory of the Quantum Hall Effect

    Get PDF
    The U(N) Maxwell-Chern-Simons matrix gauge theory is proposed as an extension of Susskind's noncommutative approach. The theory describes D0-branes, nonrelativistic particles with matrix coordinates and gauge symmetry, that realize a matrix generalization of the quantum Hall effect. Matrix ground states obtained by suitable projections of higher Landau levels are found to be in one-to-one correspondence with the expected Laughlin and Jain hierarchical states. The Jain composite-fermion construction follows by gauge invariance via the Gauss law constraint. In the limit of commuting, ``normal'' matrices the theory reduces to eigenvalue coordinates that describe realistic electrons with Calogero interaction. The Maxwell-Chern-Simons matrix theory improves earlier noncommutative approaches and could provide another effective theory of the fractional Hall effect.Comment: 35 pages, 3 figure

    Attribute abstraction

    No full text

    Management tools for distributed interoperable environments

    No full text

    The meaningful use of big data

    No full text

    Organizing software information

    No full text

    Designing a Mediator for Managing Relationships between Distributed Objects

    No full text
    corecore