1,077 research outputs found

    Renormalizability of N=1/2 Wess-Zumino model in superspace

    Full text link
    In this letter we use the spurion field approach adopted in hep-th/0307099 in order to show that by adding F and F^2 terms to the original lagrangian, the N=1/2 Wess-Zumino model is renormalizable to all orders in perturbation theory. We reformulate in superspace language the proof given in the recent work hep-th/0307165 in terms of component fields.Comment: 8 pages, minor change

    One-loop divergences in the two-dimensional non-anticommutative supersymmetric sigma-model

    Full text link
    We discuss the structure of the non-anticommutative N=2 non-linear sigma-model in two dimensions, constructing differential operators which implement the deformed supersymmetry generators and using them to reproduce the classical action. We then compute the one-loop quantum corrections and express them in a more compact form using the differential operators.Comment: 20pp, 8 figures, uses LaTeX. Title expanded to clarify conten

    N=1/2 gauge theory and its instanton moduli space from open strings in R-R background

    Get PDF
    We derive the four dimensional N=1/2 super Yang-Mills theory from tree-level computations in RNS open string theory with insertions of closed string Ramond-Ramond vertices. We also study instanton configurations in this gauge theory and their ADHM moduli space, using systems of D3 and D(-1) branes in a R-R background.Comment: 29 pages, 6 figures, JHEP class (included

    On Instantons and Zero Modes of N=1/2 SYM Theory

    Full text link
    We study zero modes of N=1/2 supersymmetric Yang-Mills action in the background of instantons. In this background, because of a quartic antichiral fermionic term in the action, the fermionic solutions of the equations of motion are not in general zero modes of the action. Hence, when there are fermionic solutions, the action is no longer minimized by instantons. By deforming the instanton equation in the presence of fermions, we write down the zero mode equations. The solutions satisfy the equations of motion, and saturate the BPS bound. The deformed instanton equations imply that the finite action solutions have U(1) connections which are not flat anymore.Comment: 9 pages, latex file, added references, minor change

    Non(anti)commutative SYM theory: Renormalization in superspace

    Full text link
    We present a systematic investigation of one-loop renormalizability for nonanticommutative N=1/2, U(N) SYM theory in superspace. We first discuss classical gauge invariance of the pure gauge theory and show that in contradistinction to the ordinary anticommutative case, different representations of supercovariant derivatives and field strengths do not lead to equivalent descriptions of the theory. Subsequently we develop background field methods which allow us to compute a manifestly covariant gauge effective action. One-loop evaluation of divergent contributions reveals that the theory simply obtained from the ordinary one by trading products for star products is not renormalizable. In the case of SYM with no matter we present a N=1/2 improved action which we show to be one-loop renormalizable and which is perfectly compatible with the algebraic structure of the star product. For this action we compute the beta functions. A brief discussion on the inclusion of chiral matter is also presented.Comment: Latex file, 59 pages, 10 figures, One reference adde

    Two-loop Renormalization for Nonanticommutative N=1/2 Supersymmetric WZ Model

    Full text link
    We study systematically, through two loops, the divergence structure of the supersymmetric WZ model defined on the N=1/2 nonanticommutative superspace. By introducing a spurion field to represent the supersymmetry breaking term F^3 we are able to perform our calculations using conventional supergraph techniques. Divergent terms proportional to F, F^2 and F^3 are produced (the first two are to be expected on general grounds) but no higher-point divergences are found. By adding ab initio F and F^2 terms to the original lagrangian we render the model renormalizable. We determine the renormalization constants and beta functions through two loops, thus making it possible to study the renormalization group flow of the nonanticommutation parameter.Comment: 36 pages, 25 figures, Latex fil

    N=1/2 Super Yang-Mills Theory on Euclidean AdS2xS2

    Full text link
    We study D-branes in the background of Euclidean AdS2xS2 with a graviphoton field turned on. As the background is not Ricci flat, the graviphoton field must have both self-dual and antiself-dual parts. This, in general, will break all the supersymmetries on the brane. However, we show that there exists a limit for which one can restore half of the supersymmetries. Further, we show that in this limit, the N=1/2 SYM Lagrangian on flat space can be lifted on to the Euclidean AdS2xS2 preserving the same amount of supersymmetries as in the flat case. We observe that without the C-dependent terms present in the action this lift is not possible.Comment: 12 pages, latex file; v2: minor corrections, references adde

    From lightcone actions to maximally supersymmetric amplitudes

    Full text link
    In this article actions for N=4 SYM and N=8 supergravity are formulated in terms of a chiral superfield, which contains only the physical degrees of freedom of either theory. In these new actions, which originate from the lightcone superspace, the supergravity cubic vertex is the square of the gauge theory one (omitting the color structures). Amplitude calculations using the corresponding Feynman supergraph rules are tedious, but can be simplified by choosing a preferred superframe. Recursive calculations of all MHV amplitudes in N=4 SYM and the four-point N=8 supergravity amplitude are shown to agree with the known results and connections to the BCFW recursion relations are pointed out. Finally, the new path integrals are discussed in the context of the double-copy property relating N=4 SYM theory to N=8 supergravity.Comment: 29 pages, 2 figures, v2: title modified, published versio

    Gauge Theory on Noncommutative Supersphere from Supermatrix Model

    Full text link
    We construct a supermatrix model which has a classical solution representing the noncommutative (fuzzy) two-supersphere. Expanding supermatrices around the classical background, we obtain a gauge theory on a noncommutative superspace on sphere. This theory has osp(12)osp(1|2) supersymmetry and u(2L+12L)u(2L+1|2L) gauge symmetry. We also discuss a commutative limit of the model keeping radius of the supersphere fixed.Comment: 16 pages, Latex, typos corrected, references adde
    corecore