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1. Introduction

The study of the effects of non trivial closed string backgrounds on the low-energy dynamics

of open strings and D-branes has attracted a lot of interest in the last few years for many

reasons. Among the simplest, yet non-trivial, possibilities that have been considered are

the backgrounds in which some of the antisymmetric tensors of the closed string spectrum

acquire a constant non-zero value. For example a constant profile for the Bµν field of

the NS-NS sector modifies the open string dynamics by introducing new couplings and

interactions which can also be interpreted in terms of a non-commutative deformation of

the space where the strings propagate [1]. Field theories, and in particular gauge theories,

defined on non-commutative spaces were the subject of vast investigations even before

the relation with string theory was realized, but it was only after the connection with

the propagation of strings in a Bµν background was exhibited that many properties of

non-commutative theories were elucidated and put in a broader perspective.

More recently, other kinds of closed string backgrounds have been considered. In

particular, in the context of type-IIB string theory compactified on a Calabi-Yau threefold,

the effects of the presence of a constant non-vanishing graviphoton field strength Cµν have

been analyzed by several authors [2]–[6]. A graviphoton background can be obtained by

wrapping the 5-form field strength of the R-R sector of type-IIB string theory on a 3-cycle

of the internal Calabi-Yau manifold, and a consistent possibility in euclidean space is to

take a Cµν with a definite duality, for example anti self-dual. A constant anti self-dual

graviphoton field strength induces a deformation of the four dimensional superspace in
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which the fermionic coordinates are no longer anticommuting Grassmann variables but

become elements of a Clifford algebra [7, 8, 2, 3, 4, 5, 6, 9]
{
θα, θβ

}
=
{
θα, θ̄β̇

}
= 0 ,

{
θ̄α̇, θ̄β̇

}
= C α̇β̇ (1.1)

where C α̇β̇ = 1
4Cµν(σ̄

µν)α̇β̇. The non-vanishing anticommutator in (1.1) breaks the four di-

mensional Lorentz group SU(2)L×SU(2)R to SU(2)L, and reduces the number of preserved

supercharges by a factor of two. Therefore, a graviphoton background deforms a N = 1

field theory in four dimensions to a N = 1/2 theory with only two preserved supercharges

and new types of interactions that are induced by the non-anticommutative structure of the

superspace. Supersymmetric field theories based on non-anticommutative superspaces and

their renormalization properties have been largely studied in the recent past from different

points of view [10, 11, 12, 13, 14, 15, 16]. More recently, also the instanton configurations

of the N = 1/2 gauge theory have been analyzed [17, 18, 19] and generalizations with

extended supersymmetry have been proposed [20, 21].

Even if the non-anticommutative algebra (1.1) has a direct string theory interpretation

as we mentioned above, so far most of the analysis of the N = 1/2 field theories has been

carried out by exploiting the superspace deformations that are induced by the graviphoton,

without making explicit reference to string theory. In this paper we fill this gap and show

that the N = 1/2 gauge theories in four dimensions can be also obtained directly from

string theory by computing, in the standard RNS formalism, scattering amplitudes in the

presence of a R-R background with constant field strength. It is a common belief that the

RNS formalism is not suited to deal with a R-R background; while this is true in general,

it is not exactly so when the R-R field strength is constant. In fact, in this case one can

represent the background by a R-R vertex operator at zero momentum which in principle

can be repeatedly inserted inside disk correlation functions among open string vertices

without affecting their dynamics. As we will see explicitly in section 2, the integrals on the

world-sheet variables that arise from these insertions turn out to be elementary and thus

the effects of the R-R background on the open string dynamics can be explicitly computed

in this way. Even though this method is intrinsically perturbative, in the field theory

limit α′ → 0 the procedure stops after the first step and so the results one obtains in this

way are exact in this limit. This is a consequence of the fact that the R-R graviphoton

background modifies the fermionic sector of the superspace as shown in (1.1) and induces a

star product which, when expanded, contains only a finite number of background insertions

as a consequence of the fermionic nature of the θ̄’s coordinates.

This paper is organized as follows: in section 2 we briefly review how to engineer the

four dimensional N = 1 super Yang-Mills theory with gauge group U(N) in terms of N

fractional D3 branes in the orbifold R6/(Z2 × Z2) and, by explicitly computing tree-level

scattering amplitudes of open strings on disks with the insertion of a R-R vertex operator,

we discuss the deformations induced by a graviphoton background on the world-volume

theory. In particular, taking the field theory limit α′ → 0 we can recover the action of the

N = 1/2 super Yang-Mills theory directly from string computations. In section 3 we extend

this analysis to a system of N D3 and k D(−1) branes in order to describe the k instanton

sector of this gauge theory and, generalizing our previous results [22], we discuss how the
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structure of the instanton moduli space and the ADHM constraints are modified by the

R-R background. This analysis involves the explicit calculation of open string amplitudes

on disks which have at least a part of their boundary on the D-instantons and which may

also contain insertions of the graviphoton vertices. In section 4 we show that these mixed

disks are the sources for the (super)-instantons of the N = 1/2 U(N) gauge theory. In

particular, we compute the emission amplitude of the gluon field from a mixed disk in

presence of a R-R vertex operator. From this amplitude, in analogy with what happens

in the closed string with the boundary state [23], we deduce the leading term in the large

distance expansion of the gluon profile in the singular gauge and find how the graviphoton

background affects the instanton solution, confirming in this way the general structure that

has been recently uncovered in the regular gauge [17, 18, 19]. Finally, in the appendix we

list our conventions and collect technical details and useful formulas for our calculations.

2. The N = 1/2 gauge theory from open strings in a R-R background

In this section we show how the gauge theory deformations induced by a graviphoton

background can be derived directly from string theory. Let us begin by considering the

pure N = 1 SYM theory in four (euclidean) dimensions with gauge group U(N) whose

action is given by1

S =
1

g2YM

∫
d4xTr

(1
2
F 2
µν − 2Λ̄α̇D̄/

α̇βΛβ

)
. (2.1)

As is well-known this action describes the low-energy dynamics on a stack of N (fractional)

D3 branes placed at the singularity of the orbifold R6/(Z2×Z2), whose massless excitations

are the gauge bosonAµ and the gauginos Λα and Λ̄α̇. These are represented by the following

open string vertex operators

VA(y; p) = (2πα′)
1
2
Aµ(p)√

2
ψµ(y) e−φ(y) ei

√
2πα′p·X(y) , (2.2)

VΛ(y; p) = (2πα′)
3
4 Λα(p)Sα(y)S

(−)(y) e−
1
2
φ(y) ei

√
2πα′p·X(y) , (2.3)

and

VΛ̄(y; p) = (2πα′)
3
4 Λ̄α̇(p)S

α̇(y)S(+)(y) e−
1
2
φ(y) ei

√
2πα′p·X(y) , (2.4)

with p2 = 0. In these vertices φ is the (chiral) boson of the superghost bosonization formu-

lae [24], Xµ and ψµ are the bosonic and fermionic string coordinates along the longitudinal

directions of the D3 branes, Sα S
(−) and Sα̇ S(+) are the spin field components which sur-

vive the GSO and orbifold projections (see appendix A.2, in particular eq. (A.27)), and y is

a point on the real axis. Finally, the factors of (2πα′) in (2.2)–(2.4) have been introduced

to assign canonical dimensions to the polarizations, namely (length)−1 to the gauge boson

and (length)−
3
2 to the gauginos, keeping, as customary, the vertex operators dimension-

less.2 Note that the above polarizations include also U(N) Chan-Paton factors T I in the

1For our conventions see appendix A.1.
2Notice that the polarization Aµ(p) has the same dimension of the the field Aµ(x) because the Fourier

transform is taken w.r.t. to the adimensional momentum k =
√
2πα′p.
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adjoint representation, which we normalize as

Tr
(
T I T J

)
=

1

2
δIJ . (2.5)

The various interaction terms in the super Yang-Mills action (2.1) can be obtained by

computing the field theory limit α′ → 0 of string scattering amplitudes among the vertex

operators (2.2) – (2.4). For example, the (color ordered) amplitude among one gauge boson

and two gauginos is

〈〈 VΛ̄ VA VΛ 〉〉 ≡ C4

∫ ∏
i dyi

dVCKG

〈
VΛ̄(y1; p1)VA(y2; p2)VΛ(y3; p3)

〉
, (2.6)

where dVCKG is the SL(2,R) invariant volume element and C4 is the topological normal-

ization of a disk with the boundary conditions of a D3 brane given by [25, 22]

C4 =
1

π2α′2
1

g2YM

. (2.7)

Using the contraction formulas of appendix A.2 and fixing the positions of the vertices to

three arbitrary points so that

dVCGK =
dya dyb dyc

(ya − yb)(yb − yc)(yc − ya)
, (2.8)

it is easy to find that

〈〈 VΛ̄ VA VΛ 〉〉 = −
2 i

g2YM

Tr
(
Λ̄α̇(p1) Ā/

α̇β
(p2) Λβ(p3)

)
(2.9)

where we have understood the δ-function of momentum conservation (we will do the same

also in the following). Note that all factors of α′ from the disk normalization C4 and the

vertices cancel out, so that this result survives in the field theory limit. The complete

coupling among a gauge boson and two gauginos is obtained by adding to (2.9) the other

inequivalent color order of the fields and thus the term Tr
(
Λ̄α̇

[
Ā/
α̇β
,Λβ

])
of the action (2.1)

is recovered. Proceeding systematically in this way, one can check that indeed all inter-

action terms in (2.1) arise from the α′ → 0 limit of scattering amplitudes3 among the

vertices (2.2)–(2.4).

It is interesting to note that the quartic interactions in TrF 2
µν can be decoupled by

introducing an auxiliary antisymmetric tensor Hµν of definite duality (say, anti self-dual),

in the adjoint representation and with dimension (length)−2, which we can write as

Hµν = Hc η̄
c
µν (2.10)

where η̄cµν are the anti self-dual ’t Hooft symbols.4 In fact the action (2.1) is equivalent to

the following one

S′ =
1

g2YM

∫
d4x Tr

{(
∂µAν − ∂νAµ

)
∂µAν + 2i ∂µAν

[
Aµ, Aν

]
−

− 2Λ̄α̇D̄/
α̇βΛβ +HcH

c +Hc η̄
c
µν

[
Aµ, Aν

]}
, (2.11)

3Remember that in euclidean space the 1PI part of a scattering amplitude is equal to minus the corre-

sponding interaction term in the action.
4This choice of duality is related to the fact that later we will introduce an anti self-dual graviphoton

background.
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which contains only cubic interaction terms. As shown in [22] for the analogous case of

D-instantons, also the auxiliary field Hµν of the D3 branes admits a representation in

string theory since it can be effectively associated to the following vertex operator (in the

0 superghost picture)

VH(y; p) = (2πα′)
Hµν(p)

2
ψνψµ(y) ei

√
2πα′p·X(y) , (2.12)

which has conformal weight 1 if p2 = 0. The factor of (2πα′) has been introduced in

order to assign the required dimension to the polarization Hµν , which includes also the

appropriate U(N) Chan-Paton factor.

It is very easy to verify that all terms in the action S ′ can be obtained from the limit

α′ → 0 of string amplitudes. For example the (color ordered) coupling among the auxiliary

field H and two gauge bosons is given by

1

2
〈〈 VH VA VA 〉〉 = −

1

g2YM

Tr
(
Hµν(p1)A

µ(p2)A
ν(p3)

)
(2.13)

where the symmetry factor of 1/2 has been introduced to account for the presence of two

alike fields. Again all factors of α′ cancel out and this result survives in the field theory

limit. Adding to (2.13) the amplitude with the other inequivalent color order of the three

vertex operators, one reconstructs the last term of (2.11). Furthermore, one can easily check

that all other amplitudes involving VH vanish in the limit α′ → 0, so that the complete

field theory result is given by the action (2.11).

2.1 The effects of the graviphoton background

We now analyze the deformations of this N = 1 gauge theory that are induced by a

graviphoton background with constant field strength. This background is usually described

by a constant antisymmetric tensor Cµν with definite duality (here we take it to be anti

self-dual) which is responsible for a non-anticommutative deformation of the N = 1 su-

perspace [2]–[6]. From the string point of view Cµν corresponds to a R-R field strength;

more precisely it is the R-R 5-form F (5) of type-IIB string theory, wrapped around the

3-cycle of the internal Calabi-Yau space. In our case the internal space is the orbifold

R6/(Z2 × Z2) and the constant graviphoton field strength is described by the following

closed string vertex operator (in the (−1/2,−1/2) superghost picture)

VF (z, z̄) = Fα̇β̇ Sα̇(z)S(+)(z)e−
1
2
φ(z) S̃β̇(z̄)S̃(+)(z̄)e−

1
2
φ̃(z̄) (2.14)

where the dimensionless polarization is a symmetric bi-spinor

Fα̇β̇ = Fβ̇α̇ . (2.15)

In the vertex (2.14) the tilde denotes the right movers, and z a point in the upper-half

complex plane. As we will see later, the tensor Cµν that is usually considered in the

literature turns out to be proportional to Fα̇β̇ (σ̄µν)
α̇β̇, which is clearly anti self-dual. Notice

that the vertex operator (2.14) does not have a ei
√
2πα′p·X term. In fact, we are considering

– 5 –



J
H
E
P
0
5
(
2
0
0
4
)
0
2
3

a constant background and hence p = 0. For this reason, as we shall explicitly see in the

following, it is possible to use the RNS formulation of string theory and compute the effects

of this R-R background on the gauge theory by evaluating scattering amplitudes on disks

with insertions of the vertex operator (2.14) in the interior.

Let us now analyze these mixed open/closed string amplitudes. When the vertex (2.14)

is inserted in the interior of a disk, the left and right movers of the closed string become

identified as a consequence of the boundary conditions. In the case of a disk representing

the world sheet of a D3 brane, the relevant boundary conditions for the spin fields are (see,

for example, eq. (2.5) of ref. [22])

Sα̇(z)S(+)(z) = S̃α̇(z̄) S̃(+)(z̄)
∣∣∣
z=z̄

, (2.16)

having conformally mapped the disk to the upper half plane and hence its boundary to

the real axis. The calculation of a disk amplitude with the insertion of the closed string

vertex (2.14) is then performed by replacing in the latter the right moving spin fields with

the left moving ones, according to

S̃α̇(z̄) S̃(+)(z̄) −→ Sα̇(z̄)S(+)(z̄) . (2.17)

Because of this replacement, any insertion of the R-R vertex (2.14) will introduce two

internal spin fields of type S(+) whose “charge” has to be compensated by two internal

spin fields of type S(−) in order to have a non-vanishing amplitude. The only vertex that

contains S(−) is that of the gaugino Λ (see eq. (2.3)), and thus we easily conclude that any

insertion of the graviphoton field strength Fα̇β̇ must be accompanied by two gauginos Λα

and Λβ. However, due to the different chiralities involved and the symmetry properties

of Fα̇β̇, it is immediate to realize that some other field is necessary in order to saturate

the spinor indices and produce a non-zero result. Indeed, with only one VF and two VΛ’s,

the correlator among the SO(4) spin fields is proportional to εαβ ε
α̇β̇ (see eq. (A.24) in

appendix A.2) which vanishes when contracted with the symmetric bi-spinor Fα̇β̇ . The

simplest possibility to avoid this is to insert a gluon vertex VA, and thus consider the

following amplitude

〈〈 VΛ VΛ VA VF 〉〉 ≡ C4

∫ ∏
i dyidzdz̄

dVCKG

〈
VΛ(y1; p1)VΛ(y2; p2)VA(y3; p3)VF (z, z̄)

〉
(2.18)

which is represented in figure 1a. Note that the vertices of the two gauginos and of the

graviphoton background already saturate the superghost charge anomaly, and thus in (2.18)

the vertex VA must be taken in the 0 superghost picture. In this picture, the properly

normalized integrated gluon vertex is (up to ghost terms) [22]

VA(y; p) = 2i (2πα′)
1
2 Aµ(p)

(
∂Xµ(y) + i (2πα′)

1
2 p · ψ ψµ(y)

)
ei
√
2πα′p·X(y) (2.19)

but, for the reasons explained above, only the p · ψ ψµ part can contribute. The ampli-

– 6 –
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PSfrag replacements

(a)

Λ

Λ

Aµ

F
PSfrag replacements

(b)

Λ

Λ

Hµν

F

Figure 1: D3 disk amplitudes involving the R-R background and the gauge field Aµ (a), the

auxiliary field Hµν (b).

tude (2.18) then becomes

〈〈 VΛ VΛ VA VF 〉〉 =
8

g2YM

(2πα′)
1
2 Tr

(
Λα(p1) Λ

β(p2) p
ν
3A

µ(p3)
)
Fα̇β̇ ×

×
∫ ∏

i dyidzdz̄

dVCKG

{〈
Sα(y1)Sβ(y2) :ψνψµ : (y3)S

α̇(z)Sβ̇(z̄)
〉
×

×
〈
S(−)(y1)S

(−)(y2)S
(+)(z)S(+)(z̄)

〉
×

×
〈
e−

1
2
φ(y1)e−

1
2
φ(y2)e−

1
2
φ(z)e−

1
2
φ(z̄)
〉
× (2.20)

×
〈
ei
√
2πα′p1·X(y1)ei

√
2πα′p2·X(y2)ei

√
2πα′p3·X(y3)

〉}
.

We now use the correlation functions given in appendix A.2 and exploit the SL(2,R)

invariance to fix y1 → ∞, z → i and z̄ → −i, so that we are left to perform the following

integral:5 ∫ +∞

−∞
dy2

∫ y2

−∞
dy3

1(
y22 + 1

) (
y23 + 1

) =
π2

2
. (2.21)

Collecting all terms, in the end we find

〈〈 VΛ VΛ VA VF 〉〉 =
8π2

g2YM

(2πα′)
1
2 Tr

(
Λ(p1)·Λ(p2) p

ν
3A

µ(p3)
)
Fα̇β̇ (σ̄νµ)

α̇β̇ . (2.22)

The complete coupling is obtained by multiplying this result by a symmetry factor of 1/2

to account for the two alike gauginos and then by adding to it the amplitude corresponding

to the other inequivalent color order of the three open string vertex operators; however,

these two effects compensate each other and so the right hand side of (2.22) is the full

answer. From this we clearly see that the field theory limit α′ → 0 yields a trivial result

unless we rescale the graviphoton field strength Fα̇β̇ to infinity, in such a way that the

following combination

4π2 (2πα′)
1
2 Fα̇β̇ (σ̄µν)

α̇β̇ ≡ Cµν (2.23)

5It is also possible to fix the SL(2,R) symmetry in a more conventional way by choosing y1 =∞, y2 = 1

and y3 = 0 and in this way to obtain the integral
∫
z∈H+ dzdz̄ 2iy

|z|2 |1−z|2
over the position of the closed string

emission vertex z = x + iy in the upper half plane. However this integral, as it stands, has a logarithmic

divergence for z → 1; this can be cured by introducing a cutoff y > ε and letting it go to zero at the end

of the computation. The result we obtain is the same as using the other gauge fixing. The reason of such

a procedure is to avoid that the closed string emission vertex collides with the border, condition which is

automatically implemented by gauge fixing z = i.
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which has dimensions of a (length), remains constant. If we do this, then the ampli-

tude (2.22) survives in the field theory limit and produces the following term in the gauge

theory action
i

g2YM

∫
d4x Tr

(
Λ·Λ

(
∂µAν − ∂νAµ

))
Cµν . (2.24)

Since the gluon vertex operator (2.19) has the same fermionic structure as the auxiliary

vertex (2.12), we should consider also the amplitude 〈〈 VΛ VΛ VH VF 〉〉, depicted in figure 1b,

whose evaluation follows exactly the same steps we have just described. In this case we

have

〈〈 VΛ VΛ VH VF 〉〉 =
2π2

g2YM

(2πα′)
1
2 Tr

(
Λ(p1)·Λ(p2)H

µν(p3)
)
Fα̇β̇ (σ̄νµ)

α̇β̇ . (2.25)

Thus, after using (2.23), we conclude that also the following term must be added to the

gauge theory action
1

2g2YM

∫
d4x Tr

(
Λ·ΛHµν

)
Cµν . (2.26)

It is worth pointing out that the disk amplitudes (2.18) and (2.25) correspond to 5-

point correlation functions from the two-dimensional world-sheet point of view, since the

closed string vertex VF effectively counts as two open string vertices due to the reflection

rules (2.17). However, the same amplitudes correspond to 3-point functions from the point

of view of the D3 brane world-volume, since there are only three vertex operators (those

associated to the massless excitations of the open strings) which carry momentum in four

dimensions and represent dynamical degrees of freedom.

It is not difficult to verify that any other disk amplitude with more insertions of the

R-R vertex operator (2.14), either is zero because of index structure, or vanishes in the field

theory limit if the combination (2.23) is kept fixed. Thus, even if we are treating the closed

string background in a perturbative way by means of successive insertions of vertices VF ,

in our case this perturbative procedure terminates after the first step. The terms (2.24)

and (2.26) are then the only two modifications produced by the graviphoton background

in the α′ → 0 limit on the gauge theory action of N D3 branes, which then becomes

S̃′ =
1

g2YM

∫
d4x Tr

{(
∂µAν − ∂νAµ

)
∂µAν + 2i ∂µAν

[
Aµ, Aν

]
− 2Λ̄α̇D̄/

α̇βΛβ + (2.27)

+ i
(
∂µAν−∂νAµ

)
Λ·ΛCµν+HcH

c+Hcη̄
c
µν

([
Aµ, Aν

]
+

1

2
Λ·ΛCµν

)}
.

Integrating out the auxiliary field H, we finally get

S̃ =
1

g2YM

∫
d4x Tr

{
1

2
F 2
µν − 2Λ̄α̇D̄/

α̇βΛβ + iF µν Λ·ΛCµν −
1

4

(
Λ·ΛCµν

)2}

=
1

g2YM

∫
d4x Tr

{(
F (−)
µν +

i

2
Λ·ΛCµν

)2
+

1

2
Fµν F̃

µν − 2Λ̄α̇D̄/
α̇βΛβ

}
(2.28)

which, in our conventions (see appendix A.1), exactly agrees with the N = 1/2 action of [5].

Therefore, we have shown that the C-interactions of the N = 1/2 super Yang-Mills theory,
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which are usually derived from a non-anticommutative deformation of the superspace, can

also be obtained directly from string theory, and in particular from the α′ → 0 limit of

open string scattering amplitudes in the presence of R-R vertex operators together with

an appropriate rescaling of the graviphoton field strength.

3. ADHM instanton moduli space in the N = 1/2 theory

In this section we describe how the R-R background that deforms the world-volume dynam-

ics on the D3 branes leading to the N = 1/2 gauge theory, also modifies the moduli space

of its (super)-instantons. Instantons represent an intrinsically non-perturbative feature of

a gauge theory; nevertheless, many aspects of their physics can be reproduced by perturba-

tive open string computations on systems of D3 branes and D-instantons [28, 29, 27, 22].

In this framework, we show that the effects of the graviphoton background on the D-

instantons can be taken into account in a very similar way to what we did in the previous

section for the D3 branes.

3.1 The undeformed moduli space

The moduli space of the (super)-instanton solutions of U(N) (super)-Yang-Mills theory is

described by the ADHM construction [26]. This construction can be naturally recast in

a stringy language (for a review see, for instance, [27] and references therein); in fact, for

instanton number k, one simply adds k D-instantons to theN D3 branes on which the gauge

theory lives. The auxiliary variables appearing in the ADHM construction correspond to

the degrees of freedom of open strings with at least one end-point attached to a D-instanton.

In [22] we presented in detail the derivation of the action for the instanton moduli starting

from open string disk amplitudes in flat space, corresponding to N = 4 gauge theory. Here

we briefly review the basic steps of this derivation, adapting it to the N = 1 case with

target space R1,3 × (R6/(Z2 × Z2)) which is relevant for our further developments.

In section 2, we saw that the tree-level gauge theory action (2.1) arises from open

string amplitudes computed on disks whose boundaries lie entirely on the D3 branes, and

evaluated in the limit α′ → 0 with the coupling gYM and the dimensionful fields Aµ, Λα

and Λ̄α̇ kept constant. The moduli action and the ADHM constraints arise instead from

open string amplitudes computed on disks with at least part of their boundaries on the

D-instantons. However, the coupling constant g0 which naturally appears in the “gauge

theory” on the D-instantons is not independent from gYM; the relation between the two is

summarized by writing the normalization C0 of disks attached to D-instantons [22, 25]

C0 =
1

2π2α′2
1

g20
=

8π2

g2YM

. (3.1)

Clearly, if gYM is kept fixed when α′ → 0, then g0, which has dimensions of (length)−2,

must blow up. This entails the fact that the moduli have to be rescaled with appropriate

powers of g0 to retain some non-trivial interactions in the field theory limit [27, 22]. In this

way, the moduli acquire the dimensions which are appropriate for their interpretation as
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parameters of an instanton solution. For instance, in the NS sector of the D(−1)/D(−1)
strings one would naturally define the “massless” vertex operator

Va(y) = (2πα′)
1
2
aµ√
2
ψµ(y) e−φ(z) , (3.2)

where the moduli aµ have dimensions of (length)−1, just as the gluon field Aµ of the D3/D3

strings. However, in order to have non-vanishing disk amplitudes in the α′ → 0 limit taken

as mentioned above, one must keep fixed the rescaled moduli [22]

a′µ =
1√
2g0

aµ , (3.3)

which have dimensions of (length) and are related to the position(s) of the (multi)-centers

of the instanton solution. Note that the above moduli carry also Chan-Paton factors tU in

the adjoint of U(k), which are normalized as

tr
(
tU tV

)
= δUV . (3.4)

In the R sector of the D(−1)/D(−1) strings on the orbifold, we have four fermionic

moduli M ′α and λα̇ which are associated to the vertices

VM (y) = (2πα′)
3
4
g0√
2
M ′

α
Sα(y)S

(−)(y) e−
1
2
φ(y) ,

Vλ(y) = (2πα′)
3
4 λ′α̇ S

α̇(y)S(+)(y) e−
1
2
φ(y) , (3.5)

where we have already taken into account the rescalings that are suitable to the α ′ →
0 limit [22]. Thus, M ′α has dimensions of (length)

1
2 , while λ′α̇ retains dimensions of

(length)−
3
2 . Also these moduli have Chan-Paton factors in the adjoint of U(k).

Let us now consider the strings that are stretched between a D3 and a D(−1) brane.

They are characterized by the fact that the four longitudinal directions to the D3 branes

have mixed boundary conditions. Thus, in the NS sector of the D3/D(−1) and D(−1)/D3

strings find the following physical vertices

Vw(y) = (2πα′)
1
2
g0√
2
w′α̇∆(y)Sα̇(y) e−φ(y) ,

Vw̄(y) = (2πα′)
1
2
g0√
2
w̄′α̇ ∆̄(y)Sα̇(y) e−φ(y) , (3.6)

where ∆ and ∆̄ are twist operators of conformal weight 1/4 (we refer to appendix A.2

for their definition and some of their properties). The bosonic moduli w ′α̇ and w̄′α̇ carry

Chan-Paton factors, respectively, in the bifundamental representations N × k and N̄× k̄

of the gauge groups and therefore one should write more explicitly w ′iuα̇ and w̄′α̇ui, where

u = 1, . . . , N and i = 1, . . . , k. As one can see from (3.6), w ′ and w′ have dimensions of a

(length) and are in fact related to the size of the instanton solution.

Finally, in the R sector of the D3/D(−1) and D(−1)/D3 strings, we find the vertices

Vµ(y) = (2πα′)
3
4
g0√
2
µ′∆(y)S(−)(y) e−

1
2
φ(y) ,

Vµ̄(y) = (2πα′)
3
4
g0√
2
µ̄′ ∆̄(y)S(−)(y) e−

1
2
φ(y) . (3.7)
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The fermionic moduli µ′ and µ̄′ have dimensions of (length)1/2, and carry the same Chan-

Paton factors as the w′’s and w̄′’s. From now on, to simplify a bit the notation, we will drop

the primes from all rescaled moduli, except from a′ and M ′ for which they are traditional

in the literature.

The vertices (3.2), (3.5), (3.6) and (3.7) exhaust the BRST-invariant spectrum of the

open strings with at least one end point on the D-instantons. However, in order to compute

the quartic interactions among the moduli, it is necessary to introduce auxiliary moduli [22],

which are the strict analogue of the auxiliary fields Hµν we introduced in section 2 for the

D3/D3 gauge theory. These new auxiliary moduli disentangle the quartic interactions, so

that the moduli action has only cubic terms. The relevant auxiliary vertex operator that

survives the orbifold projection is

VD(y) = (2πα′)
Dc η̄

c
µν

2
ψνψµ(y) , (3.8)

and describes an excitation of the D(−1)/D(−1) strings. Note that this vertex is in the

0-superghost picture and that its polarization has been rescaled according to our general

rules [22].

Computing all cubic tree-level interactions among the vertices listed above and taking

the field theory limit (with g0 →∞) we obtain the following action for the instanton moduli

of the N = 1 super Yang-Mills theory

Smod = tr
{
−iDc

(
W c + iη̄cµν

[
a′
µ
, a′

ν])− iλα̇
(
wuα̇ µ̄u + µuw̄α̇u +

[
a′αα̇,M

′α])} (3.9)

where we introduced the k × k matrices

(W c) i
j = wiuα̇ (τ c)α̇

β̇
w̄β̇uj (3.10)

with τ c being the Pauli matrices, and indicated explicitly the trace over the U(k) indices

i, j, . . .

The moduli action (3.9) is much simpler than the corresponding one for the N =

4 theory (see for instance [27]) and only accounts for the ADHM constraints without

any further structure. In fact, the moduli Dc and λα̇ appear as Lagrange multipliers,

respectively, for the bosonic ADHM constraints, which are the following three k×k matrix

equations

W c + iη̄cµν
[
a′
µ
, a′

ν]
= 0 , (3.11)

and for their fermionic counterparts

wuα̇ µ̄u + µuw̄α̇u +
[
a′αα̇,M

′α] = 0 . (3.12)

Once these constraints are satisfied, the moduli action (3.9) vanishes.

3.2 The R-R deformation of the moduli space

Now we want to take into account the effect on the instanton moduli space of the closed

string R-R background that we introduced in section 2. To do so we must compute ampli-

tudes on disks which have at least part of their boundary on the D-instantons, have some
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Figure 2: Non-zero diagrams with R-R insertions on a D(−1) disk (a) and on a mixed disk (b).

insertions of moduli vertices on the boundary and also some insertions of the R-R vertex

operator (2.14) in the interior of the disk . In computing these mixed open/closed string

amplitudes we must properly take into account the reflection rules associated to the D(−1)
boundary, which relate the anti-holomorphic to the holomorphic part of the closed vertex

operators. It turns out (see, for example, eq. (2.4) of ref. [22]) that on a D(−1) boundary

the spin fields appearing in the R-R vertex operator (2.14) have exactly the same reflection

properties of a D3 boundary given in (2.16). Thus also for the amplitudes we are now

considering, we can replace the right moving parts of the spin fields in the graviphoton

vertex with the left moving ones according to the rule (2.17).

Let us first consider disks whose boundary lies entirely on the D(−1) branes; in other

words we insert no boundary changing moduli w, w̄, µ or µ̄, and hence no twist operators

∆ or ∆̄. The situation is then strictly analogous to that of the D3 disks we considered

in section 2. Following the same reasoning given after (2.17), once a R-R vertex VF is

inserted inside a correlator, we must insert also two fermionic vertex operators VM in order

to balance the “charge” of the internal spin fields, and one auxiliary vertex VD in order

to properly saturate the spinor indices and get a non-vanishing result. Thus, we must

compute the amplitude

〈〈 VMVMVDVF 〉〉 (3.13)

which corresponds to the diagram depicted in of figure 2a.

The computation of this amplitude follows exactly the same steps described for the

amplitudes (2.18) and (2.25) in section 2. Taking into account the disk normalization

C0 given in (3.1) and the explicit expressions of the relevant vertices with their proper

normalizations, we find

〈〈 VMVMVDVF 〉〉 =
π2

2
(2πα′)

1
2 tr
(
M ′ ·M ′Dc

)
η̄cµν Fα̇β̇ (σ̄νµ)

α̇β̇

= −1

2
tr
(
M ′ ·M ′Dc

)
Cc , (3.14)

where we have defined

Cc =
1

4
η̄cµν C

µν (3.15)

with Cµν being the rescaled graviphoton field-strength introduced in (2.23).

In the D3/D(−1) system there is also another non-vanishing amplitude involving the

graviphoton background. Indeed, we can balance the “charge” of the internal spin fields of
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the R-R vertex VF also with a pair of boundary changing operators Vµ and Vµ̄, so that we

should also consider the amplitude

〈〈 Vµ̄VµVDVF 〉〉 (3.16)

which corresponds to the mixed disk represented in figure 2b. At first sight, the evaluation

of this mixed amplitude seems rather involved because the disk has two types of boundary

and hence two types of boundary reflection rules should be implemented on the closed

string vertex operator. However, as we already mentioned, the spin fields that appear

in the graviphoton vertex (2.14) have the same boundary conditions on both kinds of

boundaries [22], and so also for mixed disks the reflection properties are those of (2.17).

The amplitude (3.16) can then be evaluated following the same steps described above and

using, as specific ingredients, the correlator of two bosonic twist fields given in (A.29) and

the SO(4) correlator among a current and two spin fields given in (A.25). Taking into

account all normalization factors, in the field theory limit we finally find

〈〈 Vµ̄VµVDVF 〉〉 =
π2

2
(2πα′)

1
2 tr
(
µ̄uµ

uDc

)
η̄cµν Fα̇β̇ (σ̄νµ)α̇β̇

= −1

2
tr
(
µ̄uµ

uDc

)
Cc . (3.17)

With a systematic analysis one can show that there are no other non-vanishing diagrams

on D(−1) or mixed disks involving the graviphoton background which survive the α ′ → 0

limit, and thus (3.14) and (3.17) are the only terms that modify the moduli action Smod.

Varying such a deformed action with respect to the auxiliary fields Dc, we obtain the

modified ADHM bosonic constraints, which we again write as three k×k matrix equations

W c + iη̄cµν
[
a′
µ
, a′

ν]
+

i

2

(
M ′ ·M ′ − µuµ̄u

)
Cc = 0 . (3.18)

Since there are no new types of interactions involving the fermionic moduli λα̇ and the

graviphoton background, the fermionic ADHM constraints (3.12) remain unchanged.

We conclude this section by mentioning that a similar analysis can also be performed

to describe the moduli space of anti-instantons (i.e. gauge configurations with anti self-dual

field strength). In this case, however, one has to reverse the GSO projections on the vertex

operators of the moduli w, w̄, M ′ and λ, which then acquire an opposite SO(4) chirality as

compared to what we had before, and use an auxiliary vertex VD as in (3.8) but with η̄cµν
replaced by ηcµν . As a consequence of these changes, any string amplitude involving the anti

self-dual R-R field strength will vanish since the relevant quantity C c becomes proportional

to ηcµν C
µν which is zero. Thus, in the case of anti-instantons the ADHM constraints are

not modified by the anti self-dual graviphoton background; this result is also in agreement

with the structure of the anti-instanton solutions recently found in [17, 18, 19].

4. The profile of the deformed instanton solutions

We now study the instanton solutions of the N = 1/2 gauge theory and analyze how

the R-R background affects them. We adopt the same strategy described in detail in [22]

where we have shown that the mixed disks of the D3/D(−1) system are the sources for the
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Figure 3: Mixed disks that describe the emission of a gauge vector field AI
µ with momentum p

and without a R-R insertion (a) or with a R-R insertion (b).

classical (super)-instanton solution. In fact, by computing the emission amplitude for the

gauge vector multiplet from a mixed disk and taking its Fourier transform after inserting

a free propagator, one obtains the leading term in the large distance expansion of the

(super)-instanton solution in the singular gauge [22]. For simplicity, but without loss in

generality, here we discuss only the case of instanton number k = 1.

Let us begin with the U(N) gauge field AI
µ. There are two mixed disk diagrams that

contribute to the gluon emission and they are represented in figures 3a and 3b. The first

diagram does not involve the R-R background and corresponds to the following amplitude

〈〈 Vw̄ VAIµ(−p)Vw 〉〉 (4.1)

where in the gluon vertex we have removed the polarization and put an outgoing momentum

in such a way that the result has the Lorentz structure and the quantum numbers of an

emitted gauge vector field. Thus, the gluon vertex operator that we must use in (4.1) is

(in the 0 superghost picture)

VAIµ(−p) = 2i (2πα′)
1
2

(
∂Xµ − i (2πα′)

1
2 p · ψ ψµ

)
e−i
√
2πα′p·X . (4.2)

As in other amplitudes we have considered before, only the p·ψ ψµ term contributes in the

correlation (4.1); performing the calculation we find, as in [22],

〈〈 Vw̄ VAIµ(−p)Vw 〉〉 = i (T I)vu p
ν η̄cνµ

(
wuα̇ (τ c)α̇

β̇
w̄β̇v
)
e−ip·x0 . (4.3)

where x0 is the location of the D-instanton inside the world-volume of the D3 branes. Note

that all numerical factors and all powers of α′ from the various normalizations completely

cancel out.

We now turn to the second diagram, represented in figure 3b, which instead depends

on the R-R background. It corresponds to the following mixed amplitude

〈〈 Vµ̄ VAIµ(−p)VµVF 〉〉 (4.4)

whose evaluation is identical to that of (3.16). Indeed, we find

〈〈 Vµ̄ VAIµ(−p)VµVF 〉〉 = −2π
2 (2πα′)

1
2 (T I)vu p

ν(σ̄νµ)
α̇β̇ Fα̇β̇ µuµ̄v e−ip·x0

= −1

2
(T I)vu p

ν η̄cνµ µ
uµ̄v C

c e−ip·x0 , (4.5)

where in the last step we have introduced the rescaled graviphoton field strength according

to (2.23) and (3.15).
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There are no other diagrams with only two moduli insertions that contribute to the

emission amplitude of the gauge boson. The latter is then given by summing (4.3) and (4.5),

namely

AI
µ(p) = i (T I)vu p

ν η̄cνµ

[
(T c)uv + (Sc)uv

]
e−ip·x0 , (4.6)

where for ease of notation (and for future convenience) we have introduced the N × N
moduli-dependent matrices

(T c)uv = wuα̇ (τ c)α̇
β̇
w̄β̇v , (Sc)uv =

i

2
µuµ̄v C

c . (4.7)

The classical profile of the gauge field in configuration space is obtained by taking the

Fourier transform of the emission amplitude (4.6) after inserting a free propagator, that is

AI
µ(x) =

∫
d4p

(2π)2
AI
µ(p)

1

p2
eip·x

= 2 (T I)vu

[
(T c)uv + (Sc)uv

]
η̄cµν

(x− x0)ν
(x− x0)4

. (4.8)

As discussed in [22], this expression represents the leading term in the large distance

expansion of the instanton profile. It is important to emphasize that at this stage the field

AI
µ(x) in (4.8) depends on the unconstrained moduli wu

α̇, w̄
β̇
v, µu and µ̄v of the ADHM

construction, but in order to get the dependence from the true moduli, one must enforce

the ADHM constraints (3.18) and (3.12). In the undeformed theory, if one imposes the

bosonic constraints W c = 0, one finds that the matrices T c generate a su(2) algebra, while

of course the matrices Sc vanish. Thus, choosing a particular solution of the constraints

amounts simply to choose a particular embedding of an SU(2) subgroup inside the gauge

group U(N). Furthermore, one finds that the gauge field does not have any component

along the U(1) factor of U(N). In this way, from (4.8) one retrieves the large distance

behaviour of the standard BPST soliton in the singular gauge. In the deformed theory,

however, the bosonic ADHM constraints imply that W c 6= 0, and hence these findings are

modified.

To see what happens, let us first investigate the algebra of the matrices T and S

introduced above. Using their explicit expressions (4.7), it is easy to see that the S’s

commute among themselves and with the T ’s, i.e.

[
Sa, Sb

]
= 0 ,

[
Sa, T b

]
= 0 . (4.9)

Note that to show the second relation, we must use the fermionic constraint (3.12), which

for k = 1 reduces to wu
α̇ µ̄u + εα̇β̇ µ

u w̄β̇u = 0, actually implying that

wuα̇ µ̄u = µuw̄α̇u = 0 . (4.10)

The matrices T , with the addition of the matrix

(
T 0
)u
v
= wuα̇ w̄

α̇
v , (4.11)
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are closed under commutation, and satisfy the algebra

[
T a, T b

]
= i εabc

(
W 0T c −W cT 0

)
,

[
T 0, T a

]
= −i εabcW bT c , (4.12)

where W c ≡ Tr
(
T c) are exactly the quadratic expressions in the w’s that appear in the

ADHM constraint equations (see (3.10) for k = 1), and W 0 ≡ Tr
(
T 0). The algebra (4.12)

can be recast in the form of a standard u(2) algebra

[
ta, tb

]
= iεabc tc ,

[
t0, ta

]
= 0 , (4.13)

if we define

ta =
1√

W 2
0 − | ~W |2

(
R− 1

2

)ab (
W 0T b −W bT 0

)
,

t0 =
1

W 2
0 − | ~W |2

(
W0T

0 − ~W · ~T
)
, (4.14)

with
(
R
)ab

= W 2
0 δ

ab − W aW b . These generators are normalized in such a way that

Tr
(
tAtB

)
= 1

2 δ
AB for A = (0, a). Inverting the above equations we can express the

matrices T appearing in the gauge field profile in terms of the u(2) generators ta and t0 as

follows

T a =Mabtb +W bt0 , (4.15)

where the moduli-dependent matrixM is

Mab = W 0
√
W 2

0 − | ~W |2
(
R− 1

2

)ab
. (4.16)

From (4.9) and (4.15) it follows that the matrices S commute also with the canonical u(2)

generators, i.e.
[
Sa, tb

]
= 0 and

[
Sa, t0

]
= 0 . Using this structure, we can then rewrite the

classical solution (4.8) as

AI
µ(x) = 2

(
McbTr

(
T Itb

)
+W cTr

(
T It0

)
+ Tr

(
T ISc

))
η̄cµν

(x− x0)ν
(x− x0)4

. (4.17)

From this result we clearly see that the U(N) instanton gauge field contains a part which

is aligned, in color space, along a U(2) subgroup determined by the 4N bosonic moduli

wuα̇ and w̄α̇u through the matrices tb and t0. Both the non-abelian SU(2) and the abelian

U(1) ⊂ U(2) components are present, in a fashion which is specified by the values of

W b and W 0. Moreover, there is a part of the gauge field along another abelian factor,

commuting with the previous U(2), that is determined by the matrices S c which depend on

the fermionic moduli µu and µ̄u. However, to fully specify the instanton profile (including

the embedding of the U(2) subgroup into U(N)), it is necessary to take into account the

ADHM constraints (3.18) and (3.12). For k = 1, the bosonic ones are just the following
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three real equations6

W c = − i

2

(
M ′ ·M ′ − µuµ̄u

)
Cc ≡ Ŵ c , (4.18)

and so all we have to do is simply substitute W c = Ŵ c in the previous formulae and obtain

the gauge field profile.

To make contact with the N = 1/2 instanton solutions recently obtained in [18, 19],

let us choose a specific solution to the bosonic constraints (4.18). Decomposing the index

u as u = (β̇, i), with β̇ = 1, 2 and i = 3, . . . , N , we set
{
wβ̇α̇ = ρ δβ̇α̇ + 1

4ρ Ŵ
c (τ c)β̇α̇ ,

wiα̇ = 0 ,
(4.19)

which, in matrix notation, corresponds to choose w as the N × 2 matrix

w =

(
ρ1+ 1

4ρ Ŵ
c τ c

0(N−2)×2

)
. (4.20)

The moduli w̄α̇
u are simply the entries of the hermitian conjugate matrix w†. It is very

easy to verify that with this choice W c ≡ Tr(wτ cw†) = Ŵ c as required; moreover, the

parameter ρ (which, for Ŵ c = 0, represents the size of the instanton) appears in

W 0 ≡ Tr(ww†) =
1

2

(
4ρ2 +

1

4ρ2
| ~̂W |2

)
. (4.21)

Having fixed w and w̄ as in (4.20), we can make a specific choice of the fermionic moduli

µ and µ̄ and solve the constraints (4.10) by setting

µα̇ = µ̄α̇ = 0 . (4.22)

Furthermore, up to a U(N − 2) rotation, we can choose a single entry of µi, say µ3, to be

different from zero. With this specific choice, we therefore have

Ŵ c = − i

2

(
M ′ ·M ′ − µ3µ̄3

)
Cc , (4.23)

and hence expressions of degree three or more in Ŵ c vanish because of the grassmaniann

nature of the parameters µ3, µ̄3 and M ′α. All in all, with this specific solution of the

ADHM constraints, the instanton gauge field (4.17) can be easily described by giving its

matrix elements (Aµ)
u
v and decomposing the index u as u = (α̇, i), with i = 3, . . . , N . The

result is

(Aµ)
α̇
β̇

=

{
ρ2(τ c)α̇

β̇
− i

4

(
M ′ ·M ′ − µ3µ̄3

)
Cc δα̇

β̇
−

− 1

32ρ2

(
| ~C|2(τ c)α̇

β̇
− 2CcCb(τb)

α̇
β̇

)
M ′ ·M ′ µ3µ̄3

}
η̄cµν

(x− x0)ν
(x− x0)4

(4.24)

6These three constraints reduce the number of independent bosonic moduli to 4N − 3. Moreover,

a common phase rotation w → eiθw, w̄ → e−iθw̄ leaves invariant the matrices ta, t0 and their traces.

The true bosonic moduli are therefore 4N − 4, corresponding to the 4N − 5 parameters of the coset

U(N)/(U(N − 2) ×U(1)) plus the size of the instanton.

– 17 –



J
H
E
P
0
5
(
2
0
0
4
)
0
2
3

for the components in the upper left block. Moreover, there is also a non-vanishing com-

ponent outside this block, namely

(Aµ)
3
3 =

i

2
µ3µ̄3Cc η̄

c
µν

(x− x0)ν
(x− x0)4

. (4.25)

The above expressions are in agreement with the solution recently found in [19]. In the

comparison one has to take into account the different normalizations and conventions, as

well as the fact that their solution is in the regular gauge, while ours is in the singular

gauge. Furthermore, what we have determined is just the leading term in the long distance

expansion ρ2/(x− x0)2 ¿ 1 of the full instanton solution.

As discussed in [22], mixed disks act as a source also for the gaugino field Λα(x).

In fact they account for the leading term at long distance of the gaugino profile in the

super-instanton solution

Λα, I(x) = −2i (T I)vu
(
wu

β̇
µ̄v + µu w̄β̇v

)
(σ̄ν)

β̇α (x− x0)ν
(x− x0)4

+
i

2
M ′

β
(σµν) α

β F I
µν(x) (4.26)

where F I
µν is the gauge field strength. No diagram involving R-R insertions that could

correct this result survives in the field theory limit, and thus (4.26) is the gaugino profile

at large distance also in the N = 1/2 theory. Finally, we recall that with the replacement

M ′
α −→M ′

α − ζ̄α̇(σ̄µ)α̇β a′µ (4.27)

in all previous formulas one can account for the superconformal zero-modes of the instanton

that are parameterized by ζ̄.

We conclude by noting that the sub-leading terms in the large distance expansion

of the super-instanton solution can be obtained by a perturbative analysis [22] in which

more sources (i.e. more mixed disks) emit each a gauge boson or a gaugino, which then

interact with the (deformed) vertices of the N = 1/2 Yang-Mills theory to produce a single

gauge boson or gaugino. However, this is exactly the same procedure which has been

followed in [18, 19] to determine in a purely field-theoretical framework the (deformed)

super-instanton solution, and hence to repeat it here would not add much to our discussion.

On the other hand, in the evaluation of instanton-induced or instanton-modified correlators

one typically takes into account just the leading contribution in the large-distance expansion

of the instanton solution in the singular gauge, which is what the mixed disks provide.

It would be interesting to generalize this analysis to models with extended supersym-

metry and to other kinds of closed string backgrounds. It would be nice also to repeat

the calculation of the open string scattering amplitudes presented in this paper using the

Berkovits formalism [33] which, in contrast to the RNS formalism, allows to treat the R-R

background in an exact manner.
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A. Notations and conventions

A.1 Target-space conventions

Indices. We denote by µ = 1, 2, 3, 4 the directions in the 4-dimensional euclidean world-

volume of the D3 branes. By α and α̇ we denote, respectively, chiral and anti-chiral

spinor indices in the same space. We use u, v, . . . = 1, . . . , N to enumerate the D3-branes

and i, j = 1, . . . , k to enumerate the D-instantons. The indices u, v, . . . transform in the

fundamental (or anti-fundamental, depending whether they are in upper or lower position)

of the U(N) gauge group, while the indices i, j, . . . transform in the (anti)-fundamental of

U(k). We reserve capital indices I, J, . . . for the adjoint of U(N).

Gauge fields. We define the non-abelian field strength in terms of a hermitian connection

Aµ = AI
µ T

I as

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] . (A.1)

d = 4 Clifford algebra. Let us define the matrices (σµ)αβ̇ and (σ̄µ)α̇β with

σµ = (i~τ,1) , σ̄µ = σ†µ = (−i~τ ,1) , (A.2)

where τ c are the ordinary Pauli matrices. They satisfy the Clifford algebra

σµσ̄ν + σν σ̄µ = 2δµν 1 , (A.3)

and correspond to a Weyl representation of the γ-matrices acting on chiral or anti-chiral

spinors ψα or ψα̇. Out of these matrices, the SO(4) generators are defined by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) . (A.4)

The matrices σµν are self-dual and thus generate the SU(2)L factor of SO(4); the anti

self-dual matrices σ̄µν generate instead the SU(2)R factor. The charge conjugation matrix

C is block-diagonal in the Weyl basis, and is given by Cαβ = −εαβ and C α̇β̇ = −εα̇β̇ with

ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = +1. Moreover we raise and lower spinor indices as follows

ψα = εαβ ψβ , ψα̇ = εα̇β̇ ψ
β̇ . (A.5)

The generators (σµν)αβ and (σ̄µν)α̇β̇, in which the indices have been lowered or raised

according to the above rule, are symmetric in the spinor indices.

The explicit mapping of a self-dual SO(4) tensor into the adjoint representation of the

SU(2)L factor is realized by the ’t Hooft symbols ηcµν ; the analogous mapping of an anti

self-dual tensor into the adjoint of the SU(2)R subgroup is realized by η̄cµν . Specifically we

have

(σµν)
β
α = i ηcµν (τ

c) β
α , (σ̄µν)

α̇
β̇
= i η̄cµν (τ

c)α̇
β̇
. (A.6)
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Interpreted as 4× 4 matrices, the ’t Hooft symbols satisfy the algebra

ηcηd = −δcd1− εcdeηe (A.7)

with an analogous formula for the η̄’s. We also have

ηcµν η
d µν = 4 δcd , (A.8)

ηcµν η
c
ρσ = δµρ δνσ − δµσ δνρ + εµνρσ . (A.9)

Analogous formulas hold for the η̄’s with a minus sign in the ε terms of (A.9). From (A.9)

and (A.6) it also follows

tr
(
σµνσρσ

)
= 2

(
δµρδνσ − δµσδνρ + εµνρσ

)
,

tr
(
σ̄µν σ̄ρσ

)
= 2

(
δµρδνσ − δµσδνρ − εµνρσ

)
, (A.10)

where the trace is over the undotted or dotted spinor indices. Another useful formula is

(τc)
α̇
β̇
(τ c)γ̇

δ̇
= δα̇

δ̇
δγ̇
β̇
− εα̇γ̇εβ̇δ̇ , (A.11)

from which, after using (A.6), it follows

(σ̄µν)α̇β̇(σ̄µν)
γ̇δ̇ = −4(τc)α̇β̇(τ c)γ̇δ̇ = 4(εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇) . (A.12)

(Anti) self-dual tensors. Any antisymmetric tensor Fµν decomposes into a self-dual

and an anti self-dual component according to Fµν = F (+)
µν + F (−)

µν where

F (±)
µν = ±1

2
εµνρσF (±)

ρσ . (A.13)

We can also write F (±)
µν = (Fµν ± F̃µν)/2, with F̃µν ≡ εµνρσFρσ/2.

Given an anti self-dual tensor F (−)
µν , we can map it to a 3-vector transforming in the

adjoint representation of SU(2)R using the anti self-dual t’Hooft symbols η̄cµν according to

F (−)
µν = Fcη̄cµν , Fc = 1

4
F (−)µν η̄cµν . (A.14)

We can organize the three degrees of freedom of the anti self-dual tensor into a symmetric

dotted bi-spinor by setting

F (−)
µν =

1

2
Fα̇β̇(σ̄µν)α̇β̇ , Fα̇β̇ =

1

4
F (−)
µν (σ̄µν)α̇β̇ . (A.15)

Using (A.6), we can also write

Fc = i

2
Fα̇β̇(τ cε)α̇β̇ , Fα̇β̇ = iFc(ετ c)α̇β̇ . (A.16)

Given any two anti self-dual tensors F (−)
µν and G(−)µν , we can contract them as follows

~F · ~G ≡ F cGc =
1

4
F (−)µνG(−)µν =

1

2
F α̇β̇Gα̇β̇ , (A.17)

where in the last step we have used (A.10).
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The internal orbifold space. In order to engineer a N = 1 gauge theory with D3-

branes, we take the six-dimensional transverse space to be an orbifold, obtained by modding

out the space R6 corresponding to the directions x5, . . . , x10 (and to ψ5, . . . ψ10) by the

action of a Z2×Z2 group. The two generators g1 and g2 of this group act as follows: g1 is

a π rotation in the 7-8 plane and a −π rotation in the 9-10 plane; g2 is a π rotation in the

5-6 plane and a −π rotation in the 9-10 plane.

Given the Clifford algebra of the matrices γ5, . . . γ10 (which in our stringy perspective

are related to the 0-modes of ψ5, . . . ψ10), one can easily see that the combinations e±5−6 =

(γ5 ± iγ6)/2 , e±7−8 = (γ7 ± iγ8)/2 and e±9−10 = (γ9 ± iγ10)/2 are fermionic creation and

annihilation operators. Thus, the 8-dimensional spinor space is spanned by the states

|A〉 = |± 1
2〉5,6 ⊗ |± 1

2〉7,8 ⊗ |± 1
2〉9,10, where |± 1

2 〉5,6 have eigenvalues ±i/2 with respect to

the the Lorentz generator J56 =
[
γ5, γ6

]
/4 = iσ3/2, and similarly for the 7-8 and 9-10

directions. Then, on the spinor space the two generators of the Z2 × Z2 group are

g1 → 1⊗ eπJ78 ⊗ e−πJ9,10 = 1⊗ ei
π
2
σ3 ⊗ e−i

π
2
σ3

= 1⊗ (iσ3)⊗ (−iσ3) ,
g2 → eπJ56 ⊗ 1⊗ e−πJ9,10 = ei

π
2
σ3 ⊗ 1⊗ e−i

π
2
σ3

= (iσ3)⊗ 1⊗ (−iσ3) . (A.18)

It is easy to see that the only spinor states which are invariant under g1 and g2 are |+1
2〉5,6⊗

|+1
2 〉7,8⊗|+ 1

2〉9,10 and |− 1
2〉5,6⊗|− 1

2〉7,8⊗|− 1
2〉9,10. In other words, the only surviving spinor

weights are

~λ(+) =

(
+

1

2
,+

1

2
,+

1

2

)
, ~λ(−) =

(
−1

2
,−1

2
,−1

2

)
. (A.19)

The first one is chiral, whilst the second is anti-chiral.

A.2 World-sheet conventions

Spin fields and bosonization. As usual, to discuss SO(2N) spin fields we utilize the

Frenkel-Kaç [30] construction (see, for example, [31]). Out of 2N world-sheet fermions

ψm, a SO(2N) current is defined as Jmn =:ψmψn :. Grouping the directions in pairs, one

introduces N world-sheet bosons ϕi, (i = 1, . . . N) by

ψ2i−1 ± iψ2i

√
2

= ci e
±iϕi , (A.20)

where ci are cocycle factors needed to maintain the fermionic statistic. In a Cartan basis

with Cartan generators Hi = J2i−1,2i =:ψ2i−1ψ2i :, from (A.20) we get

Hi = i∂ϕi . (A.21)

Generators associated to a root ~α are represented by E~α = ei~α·~ϕ; more generally, operators

transforming under SO(2N) as specified by a weight vector ~λ are realized as

O~λ = c~λ ei
~λ·~ϕ , (A.22)

where again c~λ is a cocycle factor.
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Spin fields transform in a spinor representation: SA is associated to a spinor weight ~λA,

with λAi = ±1
2 (if the product of all the signs is plus or minus, the spinor is, respectively,

chiral or anti-chiral).

Correlators among operators of definite SO(2N) weights are easily found in the boso-

nized formulation, since for each boson ϕi we have

〈∏

k

eiβ
kϕi(yk)

〉
' δ
(∑

k

βk
) ∏

k<m

(yk − ym)βkβm , (A.23)

and other well-known formulae when also ∂ϕi operators are inserted.

In deriving the correlators listed below by means of the bosonization formulae, we will

not explicitly take into account the cocycle factors, but rather summarize their presence

into “effective” rules for the choice of signs and phases.

Spacetime SO(4) correlators. Our bosonization conventions are that the chiral spin

fields Sα correspond to the weights (+ 1
2 ,+

1
2 ) for α = 1 and (− 1

2 ,−1
2) for α = 2. For the

anti-chiral spin fields S α̇, instead, α̇ = 1 corresponds to (+ 1
2 ,−1

2 ) and α̇ = 2 to (− 1
2 ,+

1
2 ).

With these positions, and the general formulae discussed above, one derives the following

correlators that have been used in the main text.

The non-vanishing 4-point correlator involving spin fields of different chiralities is

〈
Sγ(y1)Sδ(y2)S

α̇(z)Sβ̇(z̄)
〉
= εγδ ε

α̇β̇ (y1 − y2)−
1
2 (z − z̄)− 1

2 , (A.24)

while the correlator with a current and two spin fields is given by

〈
:ψµψν : (y3)S

α̇(z)Sβ̇(z̄)
〉
=

1

2
(σ̄µν)

α̇β̇(z − z̄) 1
2 (y3 − z)−1 (y3 − z̄)−1 . (A.25)

A similar formula holds for chiral spin fields. A 5-point correlators between one current

and four spin fields plays a crucial role in the present paper and is given by

〈
Sγ(y1)Sδ(y2) :ψµψν : (y3)S

α̇(z)Sβ̇(z̄)
〉
=

1

2
(y1 − y2)−

1
2 (z − z̄)− 1

2 ×

×
(
(σµν)γδ ε

α̇β̇ (y1 − y2)
(y1 − y3)(y2 − y3)

+

+ εγδ (σ̄
µν)α̇β̇

(z − z̄)
(y3 − z)(y3 − z̄)

)
. (A.26)

Correlators on R6/(Z2×Z2). According to (A.19) the only surviving spin fields on the

orbifold R6/(Z2 × Z2) are

S(+) = e
i
2
(ϕ1+ϕ2+ϕ3) , S(−) = e−

i
2
(ϕ1+ϕ2+ϕ3) , (A.27)

up to cocycle factors. There is a single non-vanishing 4-spin correlator, which is crucial in

our computations and is given by

〈
S(−)(y1)S

(−)(y2)S
(+)(z)S(+)(z̄)

〉
= (y1 − y2)

3
4 (y1 − z)−

3
4 (y1 − z̄)−

3
4 (y2 − z)−

3
4 ×

×(y2 − z̄)−
3
4 (z − z̄) 3

4 . (A.28)
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Bosonic twist fields. For the D3/D(−1) and the D(−1)/D3 strings, the fields X µ along

the world-volume of the D3 branes describe Neumann-Dirichlet directions. Their twisted

boundary conditions can be seen as due to twist and anti-twist fields ∆ and ∆̄ that change

the boundary conditions from Neumann to Dirichlet and vice-versa by introducing a cut in

the world-sheet (see for example ref. [32]). The twist fields ∆ and ∆̄ are bosonic operators

with conformal dimension 1/4 and their OPE’s are

∆(y1) ∆̄(y2) ∼ (y1 − y2)−
1
2 , ∆̄(y1)∆(y2) ∼ − (y1 − y2)−

1
2 , (A.29)

where the minus sign in the second correlator is an “effective” rule to correctly account for

the space-time statistics in correlation functions. More generally, one can show that
〈
∆̄(y1) e

−i
√
2πα′p·X(y2) ∆(y3)

〉
= − e−ip·x0 (y1 − y3)−

1
2 , (A.30)

where x0 denotes the location of the D-instantons inside the world-volume of the D3 branes.

This correlator is crucial in computing the profile of the fields emitted by mixed disks, as

shown in (4.3) and (4.5).

Superghosts. As usual, we adopt the bosonized treatment of [24] of the superghost

system. We use systematically the following correlator between vertices of the type e−
1
2
φ,

where φ is the chiral boson (with background charge 2) introduced in this formalism,

namely

〈
e−

1
2
φ(y1)e−

1
2
φ(y2)e−

1
2
φ(z)e−

1
2
φ(z̄)
〉
=
[
(y1 − y2)(y1 − z)(y1 − z̄)(y2 − z)(y2 − z̄)(z − z̄)

]− 1
4
.

(A.31)

Conjugation conventions. In the NS sector, the conjugation properties of the polar-

izations are unambiguously fixed by the expression of the associated vertices themselves.

As an example, consider the vertices for the w and w̄ moduli, given in (3.6). The conjugate

of ∆Sα̇ e−φ is determined by the two-point functions of the involved conformal fields, and

is ∆̄Sα̇ e−φ. From this fact, we deduce the following conjugation rule

(wiuα̇)
∗ = w̄α̇ui , (A.32)

or simply (wα̇)
† = w̄α̇ in a k ×N matrix notation for wα̇.

In the R sector, the conjugate of the superghost part e−
1
2
φ, which is typically present in

the vertex, is e−
3
2
φ due to the background charge of the chiral boson φ, and thus we cannot

immediately deduce the behaviour of the polarizations by comparing the conjugated ver-

tices. Nevertheless, the space-time character of the conjugated polarization is determined,

so that (up to a phase) consistent conjugation rules can be declared. Our rules are the

following (in matrix notation w.r.t. to Chan-Paton indices)

(Λ1)
† = iΛ2 , (Λ2)

† = iΛ1 ,

(M ′1)
† = iM ′2 , (M ′2)

† = iM ′1 ,

µ† = iµ̄ , (µ̄)† = iµ . (A.33)

The above relations account for the reality properties of the amplitudes and solutions

appearing in the main text.
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