1,099 research outputs found

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    Uncertainty in the sensitivity of Arctic sea ice to global warming in a perturbed parameter climate model ensemble

    Get PDF
    The retreat of Arctic sea ice is a very likely consequence of climate change and part of a key feedback process, which can accelerate global warming. The uncertainty in predictions in the rate of sea ice retreat requires quantification and ultimately reduction via observational constraints. Here we analyse a climate model ensemble with perturbations to parameters in the atmosphere model. We find a large range of the sensitivity of Arctic sea-ice retreat to global temperature change, from 11 to 18% per degrees C. This is placed in the context of the uncertainty obtained by alternative model ensembles. Reasons for the different sensitivities are explored and we find that differences in the amount of ocean and atmospheric heat transported from low to high latitudes dominates over local radiative contributions to the heat budget. Furthermore, we find no significant relationship between the uncertainty in sea ice response to climate change and climate sensitivity

    Affine Constellations Without Mutually Unbiased Counterparts

    Full text link
    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations, mostly in dimension six. The observed discrepancies make a deeper relation between the two existence problems unlikely.Comment: 8 page

    To plug-in or not to plug-in? Geomorphic analysis of rivers using the River Styles Framework in an era of big data acquisition and automation

    Get PDF
    n an era of big‐data acquisition and semiautomation of geomorphic river surveys, it is timely to consider how to better integrate this into existing and widely used conceptual frameworks and approaches to analysis. We demonstrate how Stage 1 of the River Styles Framework, which entails identification and interpretation of river character and behavior, patterns and controls, can be used as a “powerboard” into which available, developing and future semiautomated tools and workflows can be plugged (or unplugged). Prospectively, such approaches will increase the efficiency and scope of analyses, providing unprecedented insights into the diversity of rivers and their morphodynamics. We appraise the role of human decision‐making in conducting expert‐manual analyses and interpretations. Genuine integration of big‐data analytics, remote‐sensing based tools for semiautomated river analysis with expert‐manual interpretations including field insights, will be an essential ingredient to fully exploit emerging computational and remote sensing technologies to advance our understanding of river systems, to translate information into knowledge, and raise the standards of practice in river science and management

    Statistical mechanics of multipartite entanglement

    Full text link
    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.Comment: final versio

    Classical Statistical Mechanics Approach to Multipartite Entanglement

    Full text link
    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.Comment: 38 pages, 10 figures, published versio

    Setting a precautionary catch limit for Antarctic krill

    Get PDF
    A revised precautionary catch limit for Antarctic krill (Euphausia superba) in the Scotia Sea of 4 million tons was recently adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). The limit was based on a total biomass of 44.3 million tons, as estimated from an acoustic and net survey of krill across the Scotia Sea sector of the Southern Ocean, and a harvest rate of 9.1%, as determined from an analysis of the risks of exceeding defined conservation criteria. We caution, however, that before the fishery can expand to the 4-inillion-ton level it will be necessary to establish mechanisms to avoid concentration of fishing effort, particularly in proximity to colonies of land-breeding krill predators, and to consider the effects of krill immigrating into the region from multiple sources

    Multipartite Entanglement and Frustration

    Full text link
    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration arises. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.Comment: 15 pages, 7 figure

    Dynamic Habitat Disturbance and Ecological Resilience (DyHDER): Modeling Population Responses to Habitat Condition

    Get PDF
    Understanding how populations respond to spatially heterogeneous habitat disturbance is as critical to conservation as it is challenging. Here, we present a new, free, and open‐source metapopulation model: Dynamic Habitat Disturbance and Ecological Resilience (DyHDER), which incorporates subpopulation habitat condition and connectivity into a population viability analysis framework. Modeling temporally dynamic and spatially explicit habitat disturbance of varying magnitude and duration is accomplished through the use of habitat time‐series data and a mechanistic approach to adjusting subpopulation vital rates. Additionally, DyHDER uses a probabilistic dispersal model driven by site‐specific habitat suitability, density dependence, and directionally dependent connectivity. In the first application of DyHDER, we explore how fragmentation and projected climate change are predicted to impact a well‐studied Bonneville cutthroat trout metapopulation in the Logan River (Utah, USA). The DyHDER model predicts which subpopulations are most susceptible to disturbance, as well as the potential interactions between stressors. Further, the model predicts how populations may be expected to redistribute following disturbance. This information is valuable to conservationists and managers faced with protecting populations of conservation concern across landscapes undergoing changing disturbance regimes. The DyHDER model provides a valuable and generalizable new tool to explore metapopulation resilience to spatially and temporally dynamic stressors for a diverse range of taxa and ecosystems
    • 

    corecore