3,649 research outputs found

    A quantum jump description for the non-Markovian dynamics of the spin-boson model

    Full text link
    We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the dynamics is studied using the non-Markovian jump description. The approach gives new insight into the memory effects influencing the spin dynamics and demonstrates, how for the spin-boson model the the co-operative action of different channels complicates the detection of memory effects in the dynamics.Comment: 9 pages, 6 figures, submitted to Proceedings of CEWQO200

    Witness for initial system-environment correlations in open system dynamics

    Full text link
    We study the evolution of a general open quantum system when the system and its environment are initially correlated. We show that the trace distance between two states of the open system can increase above its initial value, and derive tight upper bounds for the growth of the distinguishability of open system states. This represents a generalization of the contraction property of quantum dynamical maps. The obtained inequalities can be interpreted in terms of the exchange of information between the system and the environment, and lead to a witness for system-environment correlations which can be determined through measurements on the open system alone.Comment: 4 pages, 1 figur

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure

    Intersexual conflict influences female reproductive success in a female-dispersing primate

    Get PDF
    In group-living mammals, individual efforts to maximize reproductive success result in conflicts and compromises between the sexes. Females utilize counterstrategies to minimize the costs of sexual coercion by males, but few studies have examined the effect of such behaviors on female reproductive success. Secondary dispersal by females is rare among group-living mammals, but in western gorillas, it is believed to be a mate choice strategy to minimize infanticide risk and infant mortality. Previous research suggested that females choose males that are good protectors. However, how much female reproductive success varies depending on male competitive ability and whether female secondary dispersal leads to reproductive costs or benefits has not been examined. We used data on 100 females and 229 infants in 36 breeding groups from a 20-year long-term study of wild western lowland gorillas to investigate whether male tenure duration and female transfer rate had an effect on interbirth interval, female birth rates, and offspring mortality. We found that offspring mortality was higher near the end of males’ tenures, even after excluding potential infanticide when those males died, suggesting that females suffer a reproductive cost by being with males nearing the end of their tenures. Females experience a delay in breeding when they dispersed, having a notable effect on birth rates of surviving offspring per female if females transfer multiple times in their lives. This study exemplifies that female counterstrategies to mitigate the effects of male-male competition and sexual coercion may not be sufficient to overcome the negative consequences of male behavior

    Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approaches

    Full text link
    The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.Comment: 6 pages, 3 figures. Submitted to PR

    Change of decoherence scenario and appearance of localization due to reservoir anharmonicity

    Full text link
    Although coupling to a super-Ohmic bosonic reservoir leads only to partial dephasing on short time scales, exponential decay of coherence appears in the Markovian limit (for long times) if anharmonicity of the reservoir is taken into account. This effect not only qualitatively changes the decoherence scenario but also leads to localization processes in which superpositions of spatially separated states dephase with a rate that depends on the distance between the localized states. As an example of the latter process, we study the decay of coherence of an electron state delocalized over two semiconductor quantum dots due to anharmonicity of phonon modes.Comment: 4 pages, 1 figure; moderate changes; auxiliary material added; to appear in Phys. Rev. Let

    The equilibrium states of open quantum systems in the strong coupling regime

    Full text link
    In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.Comment: 20 pages, 2 figure

    Local in time master equations with memory effects: Applicability and interpretation

    Full text link
    Non-Markovian local in time master equations give a relatively simple way to describe the dynamics of open quantum systems with memory effects. Despite their simple form, there are still many misunderstandings related to the physical applicability and interpretation of these equations. Here we clarify these issues both in the case of quantum and classical master equations. We further introduce the concept of a classical non-Markov chain signified through negative jump rates in the chain configuration.Comment: Special issue on loss of coherence and memory effects in quantum dynamics, J. Phys. B., to appea

    Entanglement in SO(3)-invariant bipartite quantum systems

    Full text link
    The structure of the state spaces of bipartite (N tensor N) quantum systems which are invariant under product representations of the group SO(3) of three-dimensional proper rotations is analyzed. The subsystems represent particles of arbitrary spin j which transform according to an irreducible representation of the rotation group. A positive map theta is introduced which describes the time reversal symmetry of the local states and which is unitarily equivalent to the transposition of matrices. It is shown that the partial time reversal transformation theta_2 = (I tensor theta) acting on the composite system can be expressed in terms of the invariant 6-j symbols introduced by Wigner into the quantum theory of angular momentum. This fact enables a complete geometrical construction of the manifold of states with positive partial transposition and of the sets of separable and entangled states of (4 tensor 4) systems. The separable states are shown to form a three-dimensional prism and a three-dimensional manifold of bound entangled states is identified. A positive maps is obtained which yields, together with the time reversal, a necessary and sufficient condition for the separability of states of (4 tensor 4) systems. The relations to the reduction criterion and to the recently proposed cross norm criterion for separability are discussed.Comment: 15 pages, 3 figure

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl
    corecore