15,630 research outputs found

    Multi-Gigabit Wireless data transfer at 60 GHz

    Full text link
    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications as for example needed in the HEP experments. The wireless transceiver consist of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, an Local Oscillator (LO), a Power Amplifier (PA) and a BandPass Filter (BPF). The receiver part is composed of a BandPass- Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise Figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.Comment: Proceedings of the WIT201

    Gradient discretization of Hybrid Dimensional Darcy Flows in Fractured Porous Media with discontinuous pressures at the matrix fracture interfaces

    Get PDF
    We investigate the discretization of Darcy flow through fractured porous media on general meshes. We consider a hybrid dimensional model, invoking a complex network of planar fractures. The model accounts for matrix-fracture interactions and fractures acting either as drains or as barriers, i.e. we have to deal with pressure discontinuities at matrix-fracture interfaces. The numerical analysis is performed in the general framework of gradient discretizations which is extended to the model under consideration. Two families of schemes namely the Vertex Approximate Gradient scheme (VAG) and the Hybrid Finite Volume scheme (HFV) are detailed and shown to satisfy the gradient scheme framework, which yields, in particular, convergence. Numerical tests confirm the theoretical results. Gradient Discretization; Darcy Flow, Discrete Fracture Networks, Finite Volum

    Effect of sampling rate and record length on the determination of stability and control derivatives

    Get PDF
    Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates

    Thermomechanical properties of graphene: valence force field model approach

    Full text link
    Using the valence force field model of Perebeinos and Tersoff [Phys. Rev. B {\bf79}, 241409(R) (2009)], different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: i) only for small strains (ε0.02|\varepsilon| \lessapprox 0.02) the total energy is symmetrical in the strain, while it behaves completely different beyond this threshold; ii) the important energy contributions in stretching experiments are stretching, angle bending, out-of-plane term and a term that provides repulsion against ππ\pi-\pi misalignment; iii) in compressing experiments the two latter terms increase rapidly and beyond the buckling transition stretching and bending energies are found to be constant; iv) from stretching-compressing simulations we calculated the Young modulus at room temperature 350±3.15\pm3.15\,N/m, which is in good agreement with experimental results (340±50\pm50\,N/m) and with ab-initio results [322-353]\,N/m; v) molar heat capacity is estimated to be 24.64\,J/mol1^{-1}K1^{-1} which is comparable with the Dulong-Petit value, i.e. 24.94\,J/mol1^{-1}K1^{-1} and is almost independent of the strain; vi) non-linear scaling properties are obtained from height-height correlations at finite temperature; vii) the used valence force field model results in a temperature independent bending modulus for graphene, and viii) the Gruneisen parameter is estimated to be 0.64.Comment: 8 pages, 5 figures. To appear in J. Phys.: Condens. Matte

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure

    The Two Fluid Drop Snap-off Problem: Experiments and Theory

    Get PDF
    We address the dynamics of a drop with viscosity λη\lambda \eta breaking up inside another fluid of viscosity η\eta. For λ=1\lambda=1, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the λ\lambda dependence of the shape and breaking rate.Comment: 4 pages, 3 figure

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Motility of small nematodes in disordered wet granular media

    Full text link
    The motility of the worm nematode \textit{Caenorhabditis elegans} is investigated in shallow, wet granular media as a function of particle size dispersity and area density (ϕ\phi). Surprisingly, we find that the nematode's propulsion speed is enhanced by the presence of particles in a fluid and is nearly independent of area density. The undulation speed, often used to differentiate locomotion gaits, is significantly affected by the bulk material properties of wet mono- and polydisperse granular media for ϕ0.55\phi \geq 0.55. This difference is characterized by a change in the nematode's waveform from swimming to crawling in dense polydisperse media \textit{only}. This change highlights the organism's adaptability to subtle differences in local structure and response between monodisperse and polydisperse media

    Parallel image scanning with binary phase grating

    Get PDF
    We discuss a novel approach for parallel image scanning, whereby the intensity peaks are generated by a binary phase grating instead of a lens array. These gratings under certain conditions generate one light spot per grating period in several transverse planes. The diameter of the focal spot is not restricted by the numeric aperture according to Abbe's law and can be used to scan a specimen with many spots simultaneously. Thus, imaging speed could be increased significantly. We discuss the principle effect and approaches to scanning as well as challenges for a potential implementation
    corecore