2,141 research outputs found

    A new bridge between leptonic CP violation and leptogenesis

    Get PDF
    Flavor effects due to lepton interactions in the early Universe may have played an important role in the generation of the cosmological baryon asymmetry through leptogenesis. If the only source of high-energy CP violation comes from the left-handed leptonic sector, then it is possible to establish a bridge between flavored leptogenesis and low-energy leptonic CP violation. We explore this connection taking into account our present knowledge about low-energy neutrino parameters and the matter-antimatter asymmetry observed in the Universe. In this framework, we find that leptogenesis favors a hierarchical light neutrino mass spectrum, while for quasi-degenerate and inverted hierarchical neutrino masses there is a very narrow allowed window. The absolute neutrino mass scale turns out to be m < 0.1 eV.Comment: 10 pages, 3 figure

    Spontaneous leptonic CP violation and nonzero θ13\theta_{13}

    Get PDF
    We consider a simple extension of the Standard Model by adding two Higgs triplets and a complex scalar singlet to its particle content. In this framework, the CP symmetry is spontaneously broken at high energies by the complex vacuum expectation value of the scalar singlet. Such a breaking leads to leptonic CP violation at low energies. The model also exhibits an A4×Z4A_4\times Z_4 flavour symmetry which, after being spontaneously broken at a high-energy scale, yields a tribimaximal pattern in the lepton sector. We consider small perturbations around the tribimaximal vacuum alignment condition in order to generate nonzero values of θ13\theta_{13}, as required by the latest neutrino oscillation data. It is shown that the value of θ13\theta_{13} recently measured by the Daya Bay Reactor Neutrino Experiment can be accommodated in our framework together with large Dirac-type CP violation. We also address the viability of leptogenesis in our model through the out-of-equilibrium decays of the Higgs triplets. In particular, the CP asymmetries in the triplet decays into two leptons are computed and it is shown that the effective leptogenesis and low-energy CP-violating phases are directly linked.Comment: 17 pages; 6 figures; references added and typos corrected. Final version to appear in PR

    Conditions for CP-Violation in the General Two-Higgs-Doublet Model

    Full text link
    The most general Higgs potential of the two-Higgs-doublet model (2HDM) contains three squared-mass parameters and seven quartic self-coupling parameters. Among these, one squared-mass parameter and three quartic coupling parameters are potentially complex. The Higgs potential explicitly violates CP symmetry if and only if no choice of basis exists in the two-dimensional Higgs ``flavor'' space in which all the Higgs potential parameters are real. We exhibit four independent potentially complex invariant (basis-independent) combinations of mass and coupling parameters and show that the reality of all four invariants provides the necessary and sufficient conditions for an explicitly CP-conserving 2HDM scalar potential. Additional potentially complex invariants can be constructed that depend on the Higgs field vacuum expectation values (vevs). We demonstrate how these can be used together with the vev-independent invariants to distinguish between explicit and spontaneous CP-violation in the Higgs sector.Comment: 46 pages, minor typographical errors corrected, accepted for publication in Phys. Rev.

    Hierarchy plus anarchy in quark masses and mixings

    Full text link
    We introduce a new parameterisation of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parameterisation is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavour relations predicted by different textures, analysing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings.Comment: LaTeX, 18 pages, 16 PS figure

    Out-of-phase oscillation between superfluid and thermal components for a trapped Bose condensate under oscillatory excitation

    Full text link
    The vortex nucleation and the emergence of quantum turbulence induced by oscillating magnetic fields, introduced by Henn E A L, et al. 2009 (Phys. Rev. A 79, 043619) and Henn E A L, et al. 2009 (Phys. Rev. Lett. 103, 045301), left a few open questions concerning the basic mechanisms causing those interesting phenomena. Here, we report the experimental observation of the slosh dynamics of a magnetically trapped 87^{87}Rb Bose-Einstein condensate (BEC) under the influence of a time-varying magnetic field. We observed a clear relative displacement in between the condensed and the thermal fraction center-of-mass. We have identified this relative counter move as an out-of-phase oscillation mode, which is able to produce ripples on the condensed/thermal fractions interface. The out-of-phase mode can be included as a possible mechanism involved in the vortex nucleation and further evolution when excited by time dependent magnetic fields.Comment: 5 pages, 5 figures, 25 reference

    Quality and durability properties and life-cycle assessment of high volume biomass fly ash mortar

    Get PDF
    The effect of using biomass fly ash (BFA) on the quality, durability and sustainability of mortars was studied. Using high amounts of BFA does not lead to a production of mortars with better performance than a plain cement mortar. However, when BFA is used in small amounts mixed with coal fly ash, mortars with similar compressive strength, to that of a cement mortar, but with less carbonation and with better environmental performance are obtained. Using BFA in the concrete industry can lead to a minimisationof issues related to the high volume fly ash concrete.The authors wish to thank the Portuguese Foundation for Science and Technology (FCT) and the Eco-Construction and Rehabilitation Doctoral Program for supporting the PhD scholarship (reference PD/BD/52661/2014). This work was also financed by FEDER funds through the Competitivity Factors Operational Programme – COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01- 0145-FEDER- 007633 and through the Regional Operational Programme CENTRO2020 within the scope of the project CENTRO-01- 0145-FEDER- 000006.info:eu-repo/semantics/publishedVersio

    Basis-independent methods for the two-Higgs-doublet model II. The significance of tan(beta)

    Full text link
    In the most general two-Higgs-doublet model (2HDM), there is no distinction between the two complex hypercharge-one SU(2) doublet scalar fields, Phi_a (a=1,2). Thus, any two orthonormal linear combinations of these two fields can serve as a basis for the Lagrangian. All physical observables of the model must therefore be basis-independent. For example, tan(beta)=/ is basis-dependent and thus cannot be a physical parameter of the model. In this paper, we provide a basis-independent treatment of the Higgs sector with particular attention to the neutral Higgs boson mass-eigenstates, which generically are not eigenstates of CP. We then demonstrate that all physical Higgs couplings are indeed independent of tan(beta). In specialized versions of the 2HDM, tan(beta) can be promoted to a physical parameter of the Higgs-fermion interactions. In the most general 2HDM, the Higgs-fermion couplings can be expressed in terms of a number of physical "tan(beta)--like" parameters that are manifestly basis-independent. The minimal supersymmetric extension of the Standard Model provides a simple framework for exhibiting such effects.Comment: 56 pages, 5 tables, with Eq. (65) corrected (erratum to appear in Physical Review D

    Flavor-Changing Processes in Extended Technicolor

    Full text link
    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard-model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R)(L,R) components of the quarks and charged leptons transform under the ETC group. We consider K0Kˉ0K^{0} - \bar K^0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the LL and RR components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the LL and RR components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intra-family mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC-representation assignment of the LL and RR components of the quarks, as well as the leptons. We draw lessons for future ETC model building.Comment: 25 page

    Feno da parte aérea da mandioca para a produção de ruminantes em sistemas organicos.

    Get PDF
    As produtividades de feno observadas neste estudo indicam que o aproveitamento da parte aérea da mandioca pode representar uma estratégia de integração das atividades produtivas em uma mesma propriedade apropriada para a alimentação de ruminantes durante o período de escassez das pastagens, constituindo em um recurso disponível para manter índices adequados de produtividade dos rebanhos da região manejados de acordo com as diretrizes da produção orgânica.bitstream/CPAP-2010/57326/1/CT88.pd

    A three-parameter model for the neutrino mass matrix

    Full text link
    Using the type-II seesaw mechanism with three Higgs doublets phi_alpha (alpha = e, mu, tau) and four Higgs triplets, we build a model for lepton mixing based on a 384-element horizontal symmetry group, generated by the permutation group S_3 and by six Z_2 transformations. The charged-lepton mass matrix is diagonal; the symmetries of the model would require all the three masses m_alpha to be equal, but different vacuum expectation values of the phi_alpha allow the m_alpha to split. The number of parameters in the Majorana neutrino mass matrix m_nu depends on two options: full breaking of the permutation group S_3, or leaving a mu--tau interchange symmetry intact; and hard or spontaneous violation of CP. We discuss in detail the case with the minimal number of three parameters, wherein m_nu is real, symmetric under mu--tau interchange, and has equal diagonal elements. In that case, CP is conserved in lepton mixing, atmospheric neutrino mixing is maximal, and theta_{13} = 0; moreover, the type of neutrino mass spectrum and the absolute neutrino mass scale are sensitive functions of the solar mixing angle.Comment: 16 pages, one eps figure; some clarifications added, contains new section 5, version accepted for publication in J. Phys.
    corecore