38,662 research outputs found
Bright bichromatic entanglement and quantum dynamics of sum frequency generation
We investigate the quantum properties of the well-known process of sum
frequency generation, showing that it is potentially a very useful source of
non-classical states of the electromagnetic field, some of which are not
possible with the more common techniques. We show that it can produce
quadrature squeezed light, bright bichromatic entangled states and symmetric
and asymmetric demonstrations of the Einstein-Podolsky-Rosen paradox. We also
show that the semiclassical equations totally fail to describe the mean-field
dynamics when the cavity is strongly pumped
Quantum ultra-cold atomtronics
It is known that a semi-classical analysis is not always adequate for
atomtronics devices, but that a fully quantum analysis is often necessary to
make reliable predictions. While small numbers of atoms at a small number of
sites are tractable using the density matrix, a fully quantum analysis is often
not straightforward as the system becomes larger. We show that the fully
quantum positive-P representation is then a viable calculational tool. We
postulate an atomtronic phase-gate consisting of four wells in a Bose-Hubbard
configuration, for which the semi-classical dynamics are controllable using the
phase of the atomic mode in one of the wells. We show that the quantum
predictions of the positive-P representation for the performance of this device
have little relation to those found semi-classically, and that the performance
depends markedly on the actual quantum states of the initially occupied modes.
We find that initial coherent states lead to closest to classical dynamics, but
that initial Fock states give results that are quite different. A fully quantum
analysis also opens the door for deeply quantum atomtronics, in which
properties such as entanglement and EPR (Einstein-Podolsky-Rosen) steering
become valuable technical properties of a device.Comment: 12 pages, 6 figures, submitted to Phys. Rev
A quantum correlated twin atom laser from a Bose-Hubbard system
We propose and evaluate a method to construct a quantum correlated twin atom
laser using a pumped and damped Bose-Hubbard inline trimer which can operate in
a stationary regime. With pumping via a source condensate filling the middle
well and damping using either an electron beam or optical means at the two end
wells, we show that bipartite quantum correlations build up between the ends of
the chain, and that these can be measured either in situ or in the outcoupled
beams. While nothing similar to our system has yet been achieved
experimentally, recent advances mean that it should be practically realisable
in the near future.Comment: 15 pages, 8 figures, theory. Typos fixed and material added to
introductio
Light Curve Patterns and Seismology of a White Dwarf with Complex Pulsation
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the
mountain station of Konkoly Observatory. A rigorous frequency analysis revealed
6 certain periods between 619 and 1250 seconds, with no shorter period modes
present. We use the observed periods, published effective temperature and
surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and
Winget (2008) to perform a seismological analysis. We find acceptable model
fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the
acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to
our seismological results, we also show our analysis of individual light curve
segments. Considering the non-sinusoidal shape of the light curve and the
Fourier spectra of segments showing large amplitude variations, the importance
of non-linear effects in the pulsation is clearly seen.Comment: 5 pages, 6 figures, in "Stellar Pulsation: Challenges for Theory and
Observation", Eds. J. Guzik and P. A. Bradley, AIP
Scale invariant thermodynamics of a toroidally trapped Bose gas
We consider a system of bosonic atoms in an axially symmetric harmonic trap
augmented with a two dimensional repulsive Gaussian optical potential. We find
an expression for the grand free energy of the system for configurations
ranging from the harmonic trap to the toroidal regime. For large tori we
identify an accessible regime where the ideal gas thermodynamics of the system
are found to be independent of toroidal radius. This property is a consequence
of an invariant extensive volume of the system that we identify analytically in
the regime where the toroidal potential is radially harmonic. In considering
corrections to the scale invariant transition temperature, we find that the
first order interaction shift is the dominant effect in the thermodynamic
limit, and is also scale invariant. We also consider adiabatic loading from the
harmonic to toroidal trap configuration, which we show to have only a small
effect on the condensate fraction of the ideal gas, indicating that loading
into the scale invariant regime may be experimentally practical.Comment: 10 pages, 3 figures, to appear in Phys. Rev. A, typos corrected,
references added, rewritten to emphasize generalized volume. Results
unchange
Tripartite entanglement from interlinked parametric interactions
We examine the tripartite entanglement properties of an optical system using
interlinked interactions, recently studied experimentally in terms
of its phase-matching properties by Bondani et al [M. Bondani, A. Allevi, E.
Gevinti, A. Agliati, and A. Andreoni, arXiv:quant-ph/0604002.]. We show that
the system does produce output modes which are genuinely tripartite entangled
and that detection of this entanglement depends crucially on the correlation
functions which are measured, with a three-mode Einstein-Podolsky-Rosen
inequality being the most sensitive.Comment: 15 pages, 5 figure
When does female multiple mating evolve to adjust inbreeding? : Effects of inbreeding depression, direct costs, mating constraints, and polyandry as a threshold trait
Ackowledgements: This work was funded by a European Research Council Starting Grant to JMR. All simulations were performed using the Maxwell computing cluster at the University of AberdeenPeer reviewedPublisher PD
2-16 mu m spectroscopy of micron-sized enstatite (Mg,Fe)(2)Si2O6 silicates from primitive chondritic meteorites
We present mid-infrared spectra from individual enstatite silicate grains separated from primitive type 3 chondritic meteorites. The 2-16 mu m transmission spectra were taken with microspectroscopic Fourier-transform infrared (FT-IR) techniques as part of a project to produce a data base of infrared spectra from minerals of primitive meteorites for comparison with astronomical spectra. In general, the wavelength of enstatite bands increases with the proportion of Fe. However, the wavelengths of the strong En(100) bands at 10.67 and 11.67 decrease with increasing Fe content. The 11.67-mu m band exhibits the largest compositional wavelength shift (twice as large as any other). Our fits of the linear dependence of the pyroxene peaks indicate that crystalline silicate peaks in the 10-mu m spectra of Herbig AeBe stars, HD 179218 and 104237, are matched by pyroxenes of En(90-92) and En(78-80), respectively. If these simplistic comparisons with the astronomical grains are correct, then the enstatite pyroxenes seen in these environments are more Fe-rich than are the forsterite (Fo(100)) grains identified in the far-infrared which are found to be Mg end-member grains. This differs from the general composition of type 3 chondritic meteoritic grains in which the pyroxenes are more Mg-rich than are the olivines from the same meteorite
- …