15 research outputs found

    Quantum mechanical virial theorem in systems with translational and rotational symmetry

    Full text link
    Generalized virial theorem for quantum mechanical nonrelativistic and relativistic systems with translational and rotational symmetry is derived in the form of the commutator between the generator of dilations G and the Hamiltonian H. If the conditions of translational and rotational symmetry together with the additional conditions of the theorem are satisfied, the matrix elements of the commutator [G, H] are equal to zero on the subspace of the Hilbert space. Normalized simultaneous eigenvectors of the particular set of commuting operators which contains H, J^{2}, J_{z} and additional operators form an orthonormal basis in this subspace. It is expected that the theorem is relevant for a large number of quantum mechanical N-particle systems with translational and rotational symmetry.Comment: 24 pages, accepted for publication in International Journal of Theoretical Physic

    Low-lying quadrupole collective states of the light and medium Xenon isotopes

    Full text link
    Collective low lying levels of light and medium Xenon isotopes are deduced from the Generalized Bohr Hamiltonian (GBH). The microscopic seven functions entering into the GBH are built from a deformed mean field of the Woods-Saxon type. Theoretical spectra are found to be close to the ones of the experimental data taking into account that the calculations are completely microscopic, that is to say, without any fitting of parameters.Comment: 8 pages, 4 figures, 1 tabl

    On the inclusion of dissipation on top of mean-field approaches

    Get PDF
    International audienc
    corecore