176 research outputs found

    Phytochemical study of Joannesia princeps Vell. (Euphorbiaceae) leaves

    Get PDF
    A phytochemical study of chloroform-methanol and methanol extracts of Joannesia princeps Vell. leaves led to the isolation of twenty eight compounds, including two α-ionones (2, 5), three glycosylated monoterpenes (1, 3, 4), eight phenolic compounds (6, 8, 9, 12, 14, 17, 18, 24), two gallotannins (10, 11), twelve flavonoids (7, 15, 16, 19, 20-23, 25-28), and one lignan (13). The structural characterization of the isolated compounds was performed by spectroscopic data and comparison with the literature. All compounds were isolated from this species and from the genus Joannesia for the first time. The chemotaxonomic importance of these metabolites is therefore summarized

    New insights into the anticancer activity of carnosol: P53 reactivation in the U87MG human glioblastoma cell line

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive brain tumour with high resistance to radio- A nd chemotherapy. As such, increasing attention has focused on developing new therapeutic strategies to improve treatment responses. Recently, attention has been shifted to natural compounds that are able to halt tumour development. Among them, carnosol (CAR), a phenolic diterpene present in rosemary, has become a promising molecule that is able to prevent certain types of solid cancer. However, no data are available on the effects of CAR in GBM. Here, CAR activity decreased the proliferation of different human glioblastoma cell lines, particularly cells that express wild type p53. The p53 pathway is involved in the control of apoptosis and is often impaired in GBM. Notably, CAR, through the dissociation of p53 from its endogenous inhibitor MDM2, was able to increase the intracellular p53 levels in GBM cells. Accordingly, functional reactivation of p53 was demonstrated by the stimulation of p53 target genes' transcription, the induction of apoptosis and cell cycle blockade. Most importantly, CAR produced synergistic effects with temozolomide (TMZ) and reduced the restoration of the tumour cells' proliferation after drug removal. Thus, for the first time, these data highlighted the potential use of the diterpene in the sensitization of GBM cells to chemotherapy through a direct re-activation of p53 pathway. Furthermore, progress has been made in delineating the biochemical mechanisms underlying the pro-apoptotic effects of this molecule

    Natural compounds as inhibitors of lactate dehydrogenase

    Get PDF
    Lactate dehydrogenase (LDH) catalyses the conversion of pyruvate to lactate, utilizing NADH as co-factor. It’s a tetrameric enzyme composed of two subunits, M and H, whose association can generate five isoforms. One of this, the human isoform 5, hLDH5 has the highest activity in converting pyruvate to lactate under anaerobic conditions, such as those found in hypoxic tumors and for this reason it’s up-regulated in tumor tissues where cells glycolytic rate is up to 200 times higher than that of the normal tissue. hLDH5 inhibition should cause cancer cell death by starvation, without interfering with healthy cells that normally use oxidative phosphorylation for ATP generation (1). Inhibition of LDH is so considered as a promising target in cancer treatment, and natural compounds could serve as useful scaffold to study new anticancer agents. Among the few plant derived hLDH5 inhibitors already investigated there are mainly phenolic derivatives such as gossypol, morin, and galloflavin (2,3). In the last decade our research group successfully detected a good number of compounds obtained from Mediterranean plants with anticancer effect, and for this reason start a research program aimed to discover new classes of natural products having hLDH5 inhibitory activity. In a first study, since some species of Phlomis (Lamiaceae) proved to possess anti-cancer properties, the crude extract of P. kurdica aerial parts was selected as the starting material. Two new flavonoids and one new phenylpropanoid, together with eleven known phenolic compounds, including flavonoids and phenylpropanoids were isolated and assayed for their hLDH5 inhibitory activity. Luteolin 7-O-β-D-glucopyranoside showed an IC50 value similar to that of reference compound galloflavin (4). Then, since Polygala genus (Polygalaceae) is well known to contain phenolic oligosaccharides, xanthones, lignans, and triterpenic saponins and it’s largely used in the traditional medicine, an Italian species P. flavescens subsp. flavescens was chosen. Ten new compounds were isolated from the methanol residue of the aerial parts through Sephadex and RP-HPLC separations, including four flavonol glycosides, two oligosaccharides, one α-ionone, and three triterpenoidic saponins, together with two known oligosaccharides and two flavonol glycosides. The isolates were assayed for their inhibitory activity against hLDH5 and 3,6'-di-O-sinapoylsucrose showed an inhibition potency comparable or even slightly better than reference inhibitor galloflavin. Docking studies were carried out to hypothesize the interaction mode of active compounds in the enzyme active site

    Targeting Different Transthyretin Binding Sites with Unusual Natural Compounds

    Get PDF
    Misfolding and aggregation of the transthyretin (TTR) protein leads to certain forms of amyloidosis. Some nutraceuticals, such as flavonoids and natural polyphenols, have recently been investigated as modulators of the self-assembly process of TTR, but they generally suffer from limited bioavailability. To discover innovative and more bioavailable natural compounds able to inhibit TTR amyloid formation, a docking study was performed using the crystallographic structure of TTR. This computational strategy was projected as an adhoc inspection of the possible relationship between binding site location and modulation of the assembly process; interactions with the as-yet-unexplored epigallocatechin gallate (EGCG) sites and with the thyroxine (T4) pocket were simultaneously analyzed. All the compounds studied seem to prefer the traditional T4 binding site, but some interesting results emerged from the screening of an in-house database, used for validating the computational protocol, and of the Herbal Ingredients Targets (HIT) catalogue available on the ZINC database

    Inhibitors of lactate dehydrogenase (hLDH5) from Polygala flavescens subsp. flavescens

    Get PDF
    The human isoform 5 of lactate dehydrogenase (hLDH5) is an enzyme up-regulated in tumor tissues since cancer cells depend mainly on anaerobic respiration and their glycolytic rate is up to 200 times higher than that of the normal tissue. hLDH5 inhibition should cause cancer cell death by starvation, without interfering with healthy cells that normally use oxidative phosphorylation for ATP generation. Inhibition of LDH is so considered as a promising target in cancer treatment, since it is possible to cause a starving of cancerous cells by reducing glycolysis or by inhibiting the conversion of glucose to lactate. In the course of our research program on the hLDH5 inhibitory activity of natural products [1], a chemical study of P. flavescens subsp. flavescens was carried out. Polygala L. genus (Polygalaceae) is well known to contain phenolic oligosaccharides, xanthones, lignans, and triterpenic saponins and it’s largely used in the traditional medicine [2]. Ten new compounds were isolated from the n-BuOH residue of the aerial parts through Sephadex and RP-HPLC separations, including four flavonol glycosides, two oligosaccharides, one α-ionone, and three triterpenoidic saponins, together with two known oligosaccharides and two flavonol glycosides. All structures were elucidated on the basis of their spectroscopic and spectrometric data. The isolates were assayed for their inhibitory activity against hLDH5 and 3,6'-di-O-sinapoylsucrose showed an IC50 value of 90.4 µM. Modeling studies were carried out to suggest the putative interaction mode of this compound in the enzyme active site. This analysis highlighted that 3,6'-di-O-sinapoylsucrose shows a high number of H-bonds and interacts with enzyme regions rarely explored by the known hLDH5 inhibitors

    Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis

    Get PDF
    A high cell proliferation rate, invasiveness and resistance to chemotherapy are the main features of glioblastoma (GBM). GBM aggressiveness has been widely associated both with a minor population of cells presenting stem-like properties (cancer stem-like cells, CSCs) and with the ability of tumor cells to acquire a mesenchymal phenotype (epithelial-mesenchymal transition, EMT). Carnosol (CAR), a natural inhibitor of MDM2/p53 complex, has been attracted attention for its anti-cancer effects on several tumor types, including GBM. Herein, the effects of CAR on U87MG-derived CSC viability and stemness features were evaluated. CAR decreased the rate of CSC formation and promoted the CSC apoptotic cell death through p53 functional reactivation. Moreover, CAR was able to control the TNF-α/TGF-β-induced EMT, counteracting the effects of the cytokine on EMT master regulator genes (Slug, Snail, Twist and ZEB1) and modulating the activation of miR-200c, a key player in the EMT process. Finally, CAR was able to increase the temozolomide (TMZ) anti-proliferative effects. These findings demonstrate that CAR affected the different intracellular mechanism of the complex machinery that regulates GBM stemness. For the first time, the diterpene was highlighted as a promising lead for the development of agents able to decrease the stemness features, thus controlling GBM aggressiveness

    Chemical Profiling of Astragalus membranaceus Roots (Fish.) Bunge Herbal Preparation and Evaluation of Its Bioactivity

    Get PDF
    Astragalus membranaceus (Fish.) Bunge is a perennial herb distributed in the northern part of China, and its roots, namely, Hang qi, are included as a natural ingredient in dietary supplement formulations commonly used to treat different disorders such as respiratory infections, diabetes, and heart failure. The availability of a simple method for the determination of the quality of Astragalus herbal preparations could be a challenging issue for commercial purposes. In this study, a liquid chromatography–mass spectrometry (LC–MS)/MS based approach was used to characterize specialized metabolite recovery of 3 commercial hydroalcoholic extracts of A. membranaceus (AMG1, AMG2, AMG3) in addition to a hydroalcoholic extract of A. membranaceus root (AST). The hypoglycemic effect, cholinesterase inhibition, and antioxidant activities were also evaluated. Thirty-one compounds, of which 19 polyphenols and 12 saponins, were identified. The extracts were also quantified by using a sensitive and selective Q-Trap system for their content in flavonoids and astragalosides, selecting astragaloside I and IV as chemical markers. From our results, AMG3 preparation (Axtragyl) was the most abundant in terms of both specialized classes of metabolites, showing a fingerprint similar to that of AST. Interestingly, tested enzyme inhibition ability of flavonoids, daidzein (11) and formononetin (19), reported a higher α-glucosidase inhibition in comparison with that of acarbose used as positive control. The in silico study clarified the interactions among the molecules and the importance of having a free hydroxy group. Moreover, Axtragyl was able to exert protective effects in Caco-2 cells treated with hydrogen peroxide, confirming its ability as a potential protective agent in intestinal injury

    The citrus flavanone naringenin produces cardioprotective effects in hearts from 1 year old rat, through activation of mitoBK channels

    Get PDF
    Background and Purpose: Incidence of cardiovascular disorders increases with age, because of a dramatic fall of endogenous self-defense mechanisms and increased vulnerability of myocardium. Conversely, the effectiveness of many cardioprotective drugs is blunted in hearts of 1 year old rat. The Citrus flavanone naringenin (NAR) was reported to promote cardioprotective effects against ischemia/reperfusion (I/R) injury, through the activation of mitochondrial large conductance calcium-activated potassium channel (mitoBK). These effects were observed in young adult rats, but no data are available about the possible cardioprotective effects of NAR in aged animals. Experimental Approach: This study aimed at evaluating the potential cardioprotective effects of NAR against I/R damage in 1 year old rats, and the possible involvement of mitoBK. Key Results: Naringenin protected the hearts of 1 year old rats in both ex vivo and in vivo I/R protocols. Noteworthy, these effects were antagonized by paxilline, a selective BK-blocker. The cardioprotective effects of NAR were also observed in senescent H9c2 cardiomyoblasts. In isolated mitochondria from hearts of 1 year old, NAR exhibited the typical profile of a mitoBK opener. Finally, Western Blot analysis confirmed a significant (albeit reduced) presence of BK-forming alpha and beta subunits, both in cardiac tissue of 1 year old rats and in senescent H9c2 cells. Conclusion and Implications: This is the first work reporting cardioprotective effects of NAR in 1 year old rats. Although further studies are needed to better understand the whole pathway involved in the NAR-mediated cardioprotection, these preliminary data represent a promising perspective for a rational nutraceutical use of NAR in aging
    • …
    corecore