3,161 research outputs found

    Laser Ultrasonic Thermoelastic/Ablation Generation with Laser Interferometric Detection in Graphite/Polymer Composites

    Get PDF
    Ultrasonic signals have been generated and detected in graphite/polymer composites by optical methods. A Doppler interferometric technique was used for detection. The output voltage of this type of interferometer is proportional to the surface velocity of a sample area which is illuminated by cw laser light. Ultrasonic signals were generated by thermoelastic and ablation processes which occur as a consequence of laser pulses incident on the opposite surface of the sample. The evolution of the magnitude and shape of the detected signals was measured as a function of the pulse energy of the generating laser. Low-energy laser pulses generated ultrasound without causing obvious surface damage. At higher energies surface damage was observable in post inspection but could also be detected by observing (through protective goggles) bright flashes near the illuminated area. The energy at which these processes first occur is qualitatively referred to as the ablation threshold. Changes in the observed waveform were evident at energies above the ablation threshold. The higher-energy waveforms were found to consist of a superposition of a thermoelastic component and an ablatic component, whose relative magnitudes changed with laser power. A delay in the initiation of the ablatic wave relative to the thermoelastic wave was observed to be of the order of 0.3 μs, consistent with observations in pure polymer. [1] Photoelectric detection measurements of the ablation plume also showed a clear threshold and a time scale for growth of the ablation products with a characteristic time scale on the order of 0.3 μs

    Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    Get PDF
    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance

    Genetic Improvement @ ICSE 2020

    Get PDF
    Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the 42nd ACM/IEEE International Conference on Software Engineering on Friday 3rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face-2-face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future

    How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions

    Get PDF
    Secretory IgAs (sIgA) constitute the principal isotype of antibodies present in nasal and mucosal secretions. They are secreted by plasma cells adjacent to the mucosal epithelial cells, the site where infection occurs, and are the main humoral mediator of mucosal immunity. Mucosally delivered vaccines, such as live attenuated influenza vaccine (LAIV), are able to mimic natural infection without causing disease or virus transmission and mainly elicit a local immune response. The measurement of sIgA concentrations in nasal swab/wash and saliva samples is therefore a valuable tool for evaluating their role in the effectiveness of such vaccines. Here, we describe two standardized assays (enzyme-linked immunosorbent assay and microneutralization) available for the quantification of sIgA and discuss the advantages and limitations of their use

    A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.

    Get PDF
    Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    Lessons Learned from the European Cardiovascular Magnetic Resonance (EuroCMR) Registry Pilot Phase

    Get PDF
    The data from 11,040 patients of the European Cardiovascular Magnetic Resonance (EuroCMR) registry pilot phase offer the first documentation of the clinical use of CMR in a routine setting. The pilot data show that CMR is frequently performed in clinical practice, is a safe procedure with excellent image quality, and has a strong impact on patient management. In the future, the EuroCMR registry will help to set international benchmarks on appropriate indications, quality, and safety of CMR. In addition, outcome and cost effectiveness will be addressed on an international level in order to develop optimized imaging-guided clinical pathways and to avoid unnecessary or even harmful testing

    The evolution of methods for establishing evolutionary timescales

    Get PDF
    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’

    Regional differences in the pattern of airway remodeling following chronic allergen exposure in mice

    Get PDF
    BACKGROUND: Airway remodeling present in the large airways in asthma or asthma models has been associated with airway dysfunction in humans and mice. It is not clear if airways distal to the large conducting airways have similar degrees of airway remodeling following chronic allergen exposure in mice. Our objective was to test the hypothesis that airway remodeling is heterogeneous by optimizing a morphometric technique for distal airways and applying this to mice following chronic exposure to allergen or saline. METHODS: In this study, BALB/c mice were chronically exposed to intranasal allergen or saline. Lung sections were stained for smooth muscle, collagen, and fibronectin content. Airway morphometric analysis of small (0–50000 μm(2)), medium (50000 μm(2)–175000 μm(2)) and large (>175000 μm(2)) airways was based on quantifying the area of positive stain in several defined sub-epithelial regions of interest. Optimization of this technique was based on calculating sample sizes required to detect differences between allergen and saline exposed animals. RESULTS: Following chronic allergen exposure BALB/c mice demonstrate sustained airway hyperresponsiveness. BALB/c mice demonstrate an allergen-induced increase in smooth muscle content throughout all generations of airways, whereas changes in subepithelial collagen and fibronectin content are absent from distal airways. CONCLUSION: We demonstrate for the first time, a systematic objective analysis of allergen induced airway remodeling throughout the tracheobronchial tree in mice. Following chronic allergen exposure, at the time of sustained airway dysfunction, BALB/c mice demonstrate regional differences in the pattern of remodeling. Therefore results obtained from limited regions of lung should not be considered representative of the entire airway tree

    Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.

    Get PDF
    This chapter describes the use of optogenetic heterodimerization in single cells within whole-vertebrate embryos. This method allows the use of light to reversibly bind together an "anchor" protein and a "bait" protein. Proteins can therefore be directed to specific subcellular compartments, altering biological processes such as cell polarity and signaling. I detail methods for achieving transient expression of fusion proteins encoding the phytochrome heterodimerization system in early zebrafish embryos (Buckley et al., Dev Cell 36(1):117-126, 2016) and describe the imaging parameters used to achieve subcellular light patterning
    • …
    corecore