23 research outputs found

    Aquatic Macroinvertebrate Biodiversity Associated with Artificial Agricultural Drainage Ditches

    Get PDF
    Agricultural drainage channels and ditches are ubiquitous features in the lowland agricultural landscapes, built primarily to facilitate land drainage, irrigate agricultural crops and alleviate flood risk. Most drainage ditches are considered artificial waterbodies and are not typically included in routine monitoring programmes, and as a result the faunal and floral communities they support are poorly quantified. This paper characterizes the aquatic macroinvertebrate diversity (alpha, beta and gamma) of agricultural drainage ditches managed by an internal drainage board in Lincolnshire, UK. The drainage ditches support very diverse macroinvertebrate communities at both the site (alpha diversity) and landscape scale (gamma diversity) with the main arterial drainage ditches supporting greater numbers of taxa when compared to smaller ditches. Examination of the between site community heterogeneity (beta diversity) indicated that differences among ditches were high spatially and temporally. The results illustrate that both main arterial and side ditches make a unique contribution to aquatic biodiversity of the agricultural landscape. Given the need to maintain drainage ditches to support agriculture and flood defence measures, we advocate the application of principles from ‘reconciliation ecology’ to inform the future management and conservation of drainage ditches

    A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program.</p> <p>Methods/Design</p> <p>The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects.</p> <p>Discussion</p> <p>This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life.</p

    The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke.

    No full text
    BACKGROUND: Upper limb coordination in persons post-stroke may be estimated by the commonly used Finger-to-Nose Test (FNT), which is also part of the Fugl-Meyer Assessment. The total movement time (TMT) is used as a clinical outcome measure, while kinematic evaluation also enables an objective quantification of movement quality and motor performance. Our aims were to kinematically characterize FNT performance in persons post-stroke and controls and to investigate the construct validity of the test in persons with varying levels of impairment post-stroke. METHODS: A three-dimensional motion capture system recorded body movements during performance of the FNT in 33 persons post-stroke who had mild or moderate upper limb motor impairments (Fugl-Meyer scores of 50-62 or 32-49, respectively), and 41 non-disabled controls. TMT and kinematic variables of the hand (pointing time, peak speed, time to peak speed, number of movement units, path ratio, and pointing accuracy), elbow/shoulder joints (range of motion, interjoint coordination), and scapular/trunk movement were calculated. Our analysis focused on the pointing phase (knee to nose movement of the FNT). Independent t or Mann-Whitney U tests and effect sizes were used to analyze group differences. Sub-group analyses based on movement time and stroke severity were performed. Within the stroke group, simple and multiple linear regression were used to identify relationships between TMT to kinematic variables. RESULTS: The stroke group had significant slower TMT (mean difference 2.6 s, d = 1.33) than the control group, and six other kinematic variables showed significant group differences. At matched speeds, the stroke group had lower accuracy and excessive scapular and trunk movements compared to controls. Pointing time and elbow flexion during the pointing phase were most related to stroke severity. For the stroke group, the number of movement units during the pointing phase showed the strongest association with the TMT, and explained 60% of the TMT variance. CONCLUSIONS: The timed FNT discriminates between persons with mild and moderate upper limb impairments. However, kinematic analysis to address construct validity highlights differences in pointing movement post-stroke that are not captured in the timed FNT
    corecore