225 research outputs found

    Effect of Aspect Ratio on Field Emission Properties of ZnO Nanorod Arrays

    Get PDF
    ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/ΞΌm and 5.65 V/ΞΌm, respectively. Importantly, the sample C shows a highest enhancement of factorΞ², which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Strain induced exciton fine-structure splitting and shift in bent ZnO microwires

    Get PDF
    Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5β€…K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires

    CdSe Ring- and Tribulus-Shaped Nanocrystals: Controlled Synthesis, Growth Mechanism, and Photoluminescence Properties

    Get PDF
    With air-stable and generic reagents, CdSe nanocrystals with tunable morphologies were prepared by controlling the temperature in the solution reaction route. Thereinto, the lower reaction temperature facilitates the anisotropic growth of crystals to obtain high-yield CdSe ring- and tribulus-shaped nanocrystals with many branches on their surfaces. The photoluminescence properties are sensitive to the nature of particle and its surface. The products synthesized at room temperature, whose surfaces have many branches, show higher blue shift and narrower emission linewidths (FWHM) of photoluminescence than that of samples prepared at higher temperature, whose surfaces have no branches. Microstructural studies revealed that the products formed through self-assembly of primary crystallites. Nanorings formed through the nonlinear attachment of primary crystallites, and the branches on the surfaces grew by linear attachment at room temperature. And the structure of tribulus-shaped nanoparticle was realized via two steps of aggregation, i.e., random and linear oriented aggregation. Along with the elevation of temperature, the branches on nanocrystal surfaces shortened gradually because of the weakened linear attachment

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel Οˆβ€²β†’Ο€+Ο€βˆ’J/ψ(J/Οˆβ†’Ξ³ppΛ‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06Γ—1081.06\times 10^8 Οˆβ€²\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppΛ‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861βˆ’13+6(stat)βˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Ξ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    The Replicase Gene of Avian Coronavirus Infectious Bronchitis Virus Is a Determinant of Pathogenicity

    Get PDF
    We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene

    A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    Get PDF
    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium Ο‡ cJ decays (J=0, 1, 2) into Ο€0Ο€0Ο€0Ο€0. The analysis is based on 106Γ—106 ΟˆβŠƒβ€² decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the Ο€0Ο€0Ο€0Ο€0 hadronic final state is observed for the first time. We measure the branching fractions B(Ο‡ c0β†’Ο€0Ο€0Ο€0Ο€0)=(3.34Β±0. 06Β±0.44)Γ—10βŠƒ-3, B(Ο‡ c1β†’Ο€0Ο€0Ο€0Ο€0) =(0.57Β±0.03Β±0.08)Γ—10βŠƒ-3, and B(Ο‡ c2β†’Ο€0Ο€0Ο€0Ο€0)=(1.21Β±0.05Β±0.16) Γ—10βŠƒ-3, where the uncertainties are statistical and systematical, respectively. Β© 2011 American Physical Society.published_or_final_versio
    • …
    corecore