8 research outputs found
An Investigation of Fecal Volatile Organic Metabolites in Irritable Bowel Syndrome
Diagnosing irritable bowel syndrome (IBS) can be a challenge; many clinicians resort to invasive investigations in order to rule out other diseases and reassure their patients. Volatile organic metabolites (VOMs) are emitted from feces; understanding changes in the patterns of these VOMs could aid our understanding of the etiology of the disease and the development of biomarkers, which can assist in the diagnosis of IBS. We report the first comprehensive study of the fecal VOMs patterns in patients with diarrhea-predominant IBS (IBS-D), active Crohn's disease (CD), ulcerative colitis (UC) and healthy controls. 30 patients with IBS-D, 62 with CD, 48 with UC and 109 healthy controls were studied. Diagnosis of IBS-D was made using the Manning criteria and all patients with CD and UC met endoscopic, histologic and/or radiologic criteria. Fecal VOMs were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). 240 VOMs were identified. Univariate analysis showed that esters of short chain fatty acids, cyclohexanecarboxylic acid and its ester derivatives were associated with IBS-D (
Practical circuits with Physarum Wires
© 2016, Korean Society of Medical and Biological Engineering and Springer. Purpose: Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio-electronic components. Until recently, practical examples of electronic circuits using PWs have been limited. These PWs have been shown to be self repairing, offering significant advantage over traditional electronic components. This article documents work performed to produce practical circuits using PWs. Methods: We have demonstrated through manufacture and testing of hybrid circuits that PWs can be used to produce a variety of practical electronic circuits. A plurality of different applications of PWs have been tested to show the universality of PWs in analogue and digital electronics. Results: Voltage dividers can be produced using a pair of PWs in series with an output voltage accurate to within 12%. PWs can also transmit analogue and digital data with a frequency of up to 19 kHz, which with the addition of a buffer, can drive high current circuits. We have demonstrated that PWs can last approximately two months, a 4 fold increase on previous literature. Protoplasmic tubes can be modified with the addition of conductive or magnetic nano-particles to provide changes in functionality. Conclusions: This work has documented novel macro-scale data transmission through biological material; it has advanced the field of bio-electronics by providing a cheap and easy to grow conducting bio-material which may be used in future hybrid electronic technology