14 research outputs found
Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions
The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits
A Transcript Cleavage Factor of Mycobacterium tuberculosis Important for Its Survival
After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP). Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre) in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome
Recommended from our members
X-RAY DETECTED ACTIVE GALACTIC NUCLEI IN DWARF GALAXIES AT 0 < z < 1
We present a sample of accreting supermassive black holes (SMBHs) in dwarf galaxies at z < 1. We identify dwarf galaxies in the NEWFIRM Medium Band Survey with stellar masses of M-star < 3 x 10(9) M-circle dot that have spectroscopic redshifts from the DEEP2 survey and lie within the region covered by deep ( flux limit of similar to 5 x 10(-17)-6 x 10(-16) erg cm(-2) s(-1)) archival Chandra X-ray data. From our sample of 605 dwarf galaxies, 10 exhibit X-ray emission consistent with that arising from active galactic nucleus (AGN) activity. If black-hole mass scales roughly with stellar mass, then we expect that these AGNs are powered by SMBHs with masses of similar to 10(5)-10(6) M-circle dot and typical Eddington ratios of similar to 5%. Furthermore, we find an AGN fraction consistent with extrapolations of other searches of similar to 0.6%-3% for 10(9) M-circle dot. M-star <= 3 x 10(9) M-circle dot and 0.1 < z < 0.6. Our AGN fraction is in good agreement with a semi-analytic model, suggesting that, as we search larger volumes, we may use comparisons between observed AGN fractions and models to understand seeding mechanisms in the early universe
