46 research outputs found

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    The Cellular Mechanism for Water Detection in the Mammalian Taste System

    Get PDF
    Initiation of drinking behavior relies on both internal state and peripheral water detection. While central neural circuits regulating thirst have been well studied, it is still unclear how mammals recognize external water. Here we show that acid-sensing taste receptor cells (TRCs) that were previously suggested as the sour taste sensors also mediate taste responses to water. Genetic silencing of these TRCs abolished water-evoked responses in taste nerves. Optogenetic self-stimulation of acid-sensing TRCs in thirsty animals induced robust drinking responses toward light even without water. This behavior was only observed when animals were water-deprived but not under food- or salt-depleted conditions, indicating that the hedonic value of water-evoked responses is highly internal-state dependent. Conversely, thirsty animals lacking functional acid-sensing TRCs showed compromised discrimination between water and nonaqueous fluids. Taken together, this study revealed a function of mammalian acid-sensing TRCs that provide a cue for external water

    Formulation, characterisation and flexographic printing of novel Boger fluids to assess the effects of ink elasticity on print uniformity

    Get PDF
    Model elastic inks were formulated, rheologically characterised in shear and extension, and printed via flexography to assess the impact of ink elasticity on print uniformity. Flexography is a roll-to-roll printing process with great potential in the mass production of printed electronics for which understanding layer uniformity and the influence of rheology is of critical importance. A new set of flexo-printable Boger fluids was formulated by blending polyvinyl alcohol and high molecular weight polyacrylamide to provide inks of varying elasticity. During print trials, the phenomenon of viscous fingering was observed in all prints, with those of the Newtonian ink exhibiting a continuous striping in the printing direction. Increasing elasticity significantly influenced this continuity, disrupting it and leading to a quantifiable decrease in the overall relative size of the printed finger features. As such, ink elasticity was seen to have a profound effect on flexographic printing uniformity, showing the rheological tuning of inks may be a route to obtaining specific printed features

    Assessing fitness-to-practice of overseas-trained health practitioners by Australian registration & accreditation bodies

    Get PDF
    Assessment of fitness-to-practice of health professionals trained overseas and who wish to practice in Australia is undertaken by a range of organisations. These organisations conduct assessments using a range of methods. However there is very little published about how these organisations conduct their assessments. The purpose of the current paper is to investigate the methods of assessment used by these organisations and the issues associated with conducting these assessments

    Inertio-elastic focusing of bioparticles in microchannels at high throughput

    Get PDF
    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001

    Interleukin-17 regulation: an attractive therapeutic approach for asthma

    Get PDF
    Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma

    Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model

    Get PDF
    Diet and lifestyle produce major effects on tumour incidence, prevalence, and natural history. Moderate dietary restriction has long been recognised as a natural therapy that improves health, promotes longevity, and reduces both the incidence and growth of many tumour types. Dietary restriction differs from fasting or starvation by reducing total food and caloric intake without causing nutritional deficiencies. No prior studies have evaluated the responsiveness of malignant brain cancer to dietary restriction. We found that a moderate dietary restriction of 30–40% significantly inhibited the intracerebral growth of the CT-2A syngeneic malignant mouse astrocytoma by almost 80%. The total dietary intake for the ad libitum control group (n=9) and the dietary restriction experimental group (n=10) was about 20 and 13 Kcal day−1, respectively. Overall health and vitality was better in the dietary restriction-fed mice than in the ad libitum-fed mice. Tumour microvessel density (Factor VIII immunostaining) was two-fold less in the dietary restriction mice than in the ad libitum mice, whereas the tumour apoptotic index (TUNEL assay) was three-fold greater in the dietary restriction mice than in the ad libitum mice. CT-2A tumour cell-induced vascularity was also less in the dietary restriction mice than in the ad libitum mice in the in vivo Matrigel plug assay. These findings indicate that dietary restriction inhibited CT-2A growth by reducing angiogenesis and by enhancing apoptosis. Dietary restriction may shift the tumour microenvironment from a proangiogenic to an antiangiogenic state through multiple effects on the tumour cells and the tumour-associated host cells. Our data suggest that moderate dietary restriction may be an effective antiangiogenic therapy for recurrent malignant brain cancers
    corecore