9 research outputs found

    Inhibition of Hippocampal Synaptic Activity by ATP, Hypoxia or Oxygen-Glucose Deprivation Does Not Require CD73

    Get PDF
    Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5′-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73+/+ and CD73−/− mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of approximately 25 µM. In contrast, ATP was a less potent inhibitor (IC50 = 100 µM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73+/+ and CD73−/− slices were blocked by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73−/− and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73−/− mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Measurement of purine release with microelectrode biosensors

    No full text
    Purinergic signalling departs from traditional paradigms of neurotransmission in the variety of release mechanisms and routes of production of extracellular ATP and adenosine. Direct real-time measurements of these purinergic agents have been of great value in understanding the functional roles of this signalling system in a number of diverse contexts. Here, we review the methods for measuring purine release, introduce the concept of microelectrode biosensors for ATP and adenosine and explain how these have been used to provide new mechanistic insight in respiratory chemoreception, synaptic physiology, eye development and purine salvage. We finish by considering the association of purine release with pathological conditions and examine the possibilities that biosensors for purines may one day be a standard part of the clinical diagnostic tool chest
    corecore