773 research outputs found

    Stokes-space formalism for Bragg scattering in a fiber

    Full text link
    Optical frequency conversion by four-wave mixing (Bragg scattering) in a fiber is considered. The evolution of this process can be modeled using the signal and idler amplitudes, which are complex, or Stokes-like parameters, which are real. The Stokes-space formalism allows one to visualize power and phase information simultaneously, and produces a simple evolution equation for the Stokes parameters

    Gamma positioning and market quality

    Get PDF
    In this paper, we study the effect of the gamma positioning of dynamic hedgers on market quality through simulations. In our zero-intelligence model, the presence of dynamic hedgers enhances market liquidity under normal conditions. However, positive gamma helps sustain liquidity in stressed scenarios, while negative gamma depletes it. We find that an increase in the net gamma positioning of dynamic hedgers reduces volatility and increases market stability, whereas a negative gamma positioning increases volatility and makes the market more prone to failure. Price discovery typically worsens when dynamic hedgers become more prevalent, regardless of the sign of their positioning. Our findings imply that steering the net gamma position of dynamic hedgers can be considered a policy instrument to improve market quality, especially for instruments with low liquidity or low traded volume.</p

    Biomarkers of coagulation and inflammation in dogs after randomized administration of 6% Hydroxyethyl Starch 130/0.4 or Hartmann’s Solution

    Get PDF
    Synthetic colloid fluids containing hydroxyethyl starch (HES) have been associated with impairment of coagulation in dogs. It is unknown if HES causes coagulation impairment in dogs with naturally occurring critical illness. This study used banked plasma samples from a blinded, randomized clinical trial comparing HES and balanced isotonic crystalloid for bolus fluid therapy in 39 critically ill dogs. Blood was collected prior to fluid administration and 6, 12, and 24 h thereafter. Coagulation biomarkers measured at each time point included prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen concentration, and the activities of coagulation factors V, VII, VIII, IX, and X, von Willebrand factor antigen, antithrombin, and protein C. Given the links between coagulation and inflammation, cytokine concentrations were also measured, including interleukins 6, 8, 10, and 18, keratinocyte-derived chemokine, and monocyte chemoattractant protein-1. Data were analyzed with linear mixed effects models. No significant treatment-by-time interactions were found for any biomarker, indicating that the pattern of change over time was not modified by treatment. Examining the main effect of time showed significant changes in several coagulation biomarkers and keratinocyte-derived chemokines. This study could not detect evidence of coagulation impairment with HES

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Revisiting glueball wave functions at zero and finite temperature

    Full text link
    We study the sizes and thermal properties of glueballs in a three dimensional compact Abelian gauge model on improved lattice. We predict the radii of ∌0.60\sim 0.60 and ∌1.12\sim 1.12 in the units of string tension, or ∌0.28\sim 0.28 and ∌0.52\sim 0.52 fm, for the scalar and tensor glueballs, respectively. We perform a well controlled extrapolation of the radii to the continuum limit and observe that our results agree with the predicted values. Using Monte Carlo simulations, we extract the pole-mass of the lowest scalar and tensor glueballs from the temporal correlators at finite temperature. We see a clear evidence of the deconfined phase, and the transition appears to be similar to that of the two-dimensional XY model as expected from universality arguments. Our results show no significant changes in the glueball wave functions and masses in the deconfined phase.Comment: 8 pages, 10 figure

    Glueballs, gluon condensate, and pure glue QCD below T_c

    Full text link
    A quasiparticle description of pure glue QCD thermodynamics at T<T_c is proposed and compared to recent lattice data. Given that a gas of glueballs with constant mass cannot quantitatively reproduce the early stages of the deconfinement phase transition, the problem is to identify a relevant mechanism leading to the observed sudden increase of the pressure, trace anomaly, etc. It is shown that the strong decrease of the gluon condensate near T_c combined with the increasing thermal width of the lightest glueballs might be the trigger of the phase transition.Comment: 5 pages, 5 figures; analysis refined in v2, explanations added; v3 to appear in EPJ

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

    Full text link
    We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components Bx(x)B_x({\bf x}), By(x)B_y({\bf x}), Bz(x)B_z({\bf x}), the force-free parameter α(x)\alpha({\bf x}), the electric current density j(x){\bf j}({\bf x}), and are accurate to second-order (of the nonlinear force-free α\alpha-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure

    Does the QCD plasma contain propagating gluons?

    Get PDF
    Comparison of two appropriately chosen screening masses of colour singlet operators in the pure glue QCD plasma indicates that at sufficiently high temperature it contains a weakly-interacting massive quasi-particle with the quantum numbers of the electric gluon. Still in the deconfined phase, but closer to T_c, the same mass ratio is similar to that at zero temperature, indicating that the propagating modes are more glueball-like, albeit with a lower scale for the masses. We observe a continuity between these two regimes.Comment: 4 pages, 3 figure

    Glueball Properties at Finite Temperature in SU(3) Anisotropic Lattice QCD

    Full text link
    The thermal properties of the glueballs are studied using SU(3) anisotropic lattice QCD with beta=6.25, the renormalized anisotropy xi=a_s/a_t=4 over the lattice of the size 20^3\times N_t with N_t = 24, 26, 28, 30, 33, 34, 35, 36, 37, 38, 40, 43, 45, 50, 72 at the quenched level. To construct a suitable operator on the lattice, we adopt the smearing method, and consider its physical meaning in terms of the operator size. First, we construct the temporal correlators G(t) for the 0^{++} and 2^{++} glueballs, using more than 5,000 gauge configurations at each temperature. We then measure the pole-mass of the thermal glueballs from G(t). For the lowest 0^{++} glueball, we observe a significant pole-mass reduction of about 300 MeV near T_c or m_G(T\simeq T_c) \simeq 0.8 m_G(T\sim 0), while its size remains almost unchanged as rho(T) \simeq 0.4fm. Finally, for completeness, as an attempt to take into account the effect of thermal width Gamma(T) at finite temperature, we perform a more general new analysis of G(t) based on its spectral representation. By adopting the Breit-Wigner form for the spectral function rho(omega), we perform the best-fit analysis as a straightforward extension to the standard pole-mass analysis. The result indicates a significant broadening of the peak as Gamma(T) \sim 300 MeV as well as rather modest reduction of the peak center of about 100 MeV near T_c for the lowest 0^{++} glueball. The temporal correlators of the color-singlet modes corresponding to these glueballs above T_c are also investigated.Comment: This is the revised version using more gauge configurations near T_c. 25 pages, Latex2e, 22 figure

    2022 Update of the consensus on the rational use of antithrombotics and thrombolytics in Veterinary Critical Care (CURATIVE) Domain 6: Defining rational use of thrombolytics

    Get PDF
    Objectives To systematically review available evidence and establish guidelines related to the use of thrombolytics for the management of small animals with suspected or confirmed thrombosis. Design PICO (Population, Intervention, Control, and Outcome) questions were formulated, and worksheets completed as part of a standardized and systematic literature evaluation. The population of interest included dogs and cats (considered separately) and arterial and venous thrombosis. The interventions assessed were the use of thrombolytics, compared to no thrombolytics, with or without anticoagulants or antiplatelet agents. Specific protocols for recombinant tissue plasminogen activator were also evaluated. Outcomes assessed included efficacy and safety. Relevant articles were categorized according to level of evidence, quality, and as to whether they supported, were neutral to, or opposed the PICO questions. Conclusions from the PICO worksheets were used to draft guidelines, which were subsequently refined via Delphi surveys undertaken by the Consensus on the Rational Use of Antithrombotics and Thrombolytics in Veterinary Critical Care (CURATIVE) working group. Results Fourteen PICO questions were developed, generating 14 guidelines. The majority of the literature addressing the PICO questions in dogs is experimental studies (level of evidence 3), thus providing insufficient evidence to determine if thrombolysis improves patient-centered outcomes. In cats, literature was more limited and often neutral to the PICO questions, precluding strong evidence-based recommendations for thrombolytic use. Rather, for both species, suggestions are made regarding considerations for when thrombolytic drugs may be considered, the combination of thrombolytics with anticoagulant or antiplatelet drugs, and the choice of thrombolytic agent. Conclusions Substantial additional research is needed to address the role of thrombolytics for the treatment of arterial and venous thrombosis in dogs and cats. Clinical trials with patient-centered outcomes will be most valuable for addressing knowledge gaps in the field
    • 

    corecore