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In this paper, we study the effect of the gamma positioning of dynamic hedgers on market quality 
through simulations. In our zero-intelligence model, the presence of dynamic hedgers enhances 
market liquidity under normal conditions. However, positive gamma helps sustain liquidity in 
stressed scenarios, while negative gamma depletes it. We find that an increase in the net gamma 
positioning of dynamic hedgers reduces volatility and increases market stability, whereas a 
negative gamma positioning increases volatility and makes the market more prone to failure. Price 
discovery typically worsens when dynamic hedgers become more prevalent, regardless of the sign 
of their positioning. Our findings imply that steering the net gamma position of dynamic hedgers 
can be considered a policy instrument to improve market quality, especially for instruments with 
low liquidity or low traded volume.

1. Introduction

In November 2014 an unexpectedly large number of sell orders caused U.S. Treasuries to drop 1.6% before rebounding fully by 
an equally unprecedented number of buy orders. The intraday largest Treasury move since 2009 is attributed to a large short option 
position amongst delta neutral traders (Levine et al., 2017). This phenomenon is called a gamma trap or a gamma squeeze: excessive 
price volatility induced by dynamic hedgers who involuntarily act as momentum traders due to their short gamma position and 
preference for an overall delta-neutral position.

Risk sensitivities of option contracts to certain parameters are denoted by ‘Greeks,’ which are the partial first derivatives of the 
option price in the Black and Scholes (1973) formula to option characteristics. The most prominent of these Greeks is delta, which 
measures the price sensitivity of the option with respect to price changes in the underlying security. Gamma is a second-order Greek 
and measures the degree by which this delta changes when the underlying security’s price moves.1 All option contracts exhibit some 
non-zero gamma; option contracts that are close to maturing and ‘at the money’ exhibit the largest gamma. Dynamic hedgers are 
market participants whose objective is to maintain a constant delta. Dynamic hedging trading desks are prevalent at banks, insurers, 
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high-frequency trading firms, and hedge funds, which hedge option positions by dynamically replicating their exposure using the 
underlying security. The existence of gamma makes their hedging strategy dynamic, as changes in the price of the underlying alters 
the delta of the option portfolio and this requires a re-balancing in the hedge portfolio.

An open question is what the activity of dynamic hedgers, who by definition act indifferently to the fundamental or long-term 
value of securities, does to the market quality of the underlying security. The presence of arbitrageurs is generally seen as favorable 
for market quality (Baruch et al., 2007; Rappoport and Tuzun, 2020; Rösch, 2021). On the other hand, the presence of high-frequency 
traders introduces a trade-off between liquidity and efficiency (Arifovic et al., 2022). It is not at all obvious, though, that dynamic 
hedgers should meet similar praise as their presence is anecdotally linked to flash crashes, gamma traps, and excessive volatility.2

On the one hand, the theoretical option pricing literature shows that the dynamic replication of an option portfolio dampens 
or exacerbates volatility through the so-called ‘feedback effect’ of the overall net gamma position of dynamic hedgers: a long net 
gamma position dampens volatility whereas a short position amplifies this. Recently, this feedback effect has garnered attention from 
researchers, who incorporate feedback effects in theoretical option pricing models. Bank et al. (2017, March) for instance explicitly 
solve how optimal hedging strategies are affected by temporary price impact, whereas Bouchard et al. (2015) do so for linear impact. 
Similarly, Almgren (2015) and Abergel and Loeper (2017) show that optimal dynamic hedge strategies are altered when the non-

endogeneity constraint is relaxed. Anderegg et al. (2022) derive a simple expression of the feedback effect under linear permanent 
market impact. When the total gamma exposure is of the magnitude of a hundred times the permanent market impact, the equation 
becomes quasi-linear. Relatedly, Jeannin et al. (2008) theoretically study the effect of hedging on stock pinning. They show that 
stock prices tend to move closer to the strike price of heavily traded options as maturity nears.

The empirical literature, on the other hand, contains very few studies of the effect of dynamic hedging on market quality di-

mensions. This is due to the fact that proprietary data on option positions of dynamic hedgers is required, but is typically not 
available. Anderegg et al. (2022) use a classification algorithm instead to infer the net option position among dynamic hedgers. They 
observe a relation between option positioning and realized volatility in the foreign exchange market for the euro-US dollar and US 
dollar-Japanese yen. Baltussen et al. (2021) acknowledge the importance of gamma trading on market functioning and specifically 
its impact on asset allocation choices. They assume, however, from the outset that dealers are short gamma. Whilst their metric 
succeeds in predicting intraday momentum, their implicit assumption that the dealers’ clients are more prone to buy puts than calls 
on average limits their study to a one-sided effect of gamma trading.

In this paper, we study the effect of dynamic hedgers on different dimensions of market quality of the underlying security, such 
as volatility, liquidity, price discovery, and market failure through a simulation study. We expand on the literature by studying more 
than just the feedback effect and explore both short and long gamma positioning. We study the effects of gamma positioning on 
market quality via simulations. We first use a Monte Carlo simulation that allows us to isolate the gamma channel by comparing 
parallel markets that only differ in gamma positioning. Secondly, we add further complexity to the simulation by letting multiple 
stochastic processes interact under the presence or absence of a dynamic hedge heuristic. Since all data is self-generated, we have 
an exact description of all revealed and latent information at any moment. The presence of perfect information allows us to utilize 
sophisticated liquidity measures, to exactly trace the price discovery process, and measure the impact on market metrics.

We develop a simulation model in which heterogeneous agents interact in the order book of a risky asset. A set of stochastic order 
arrival processes representing generic end-users in combination with a stochastic news-shock process, and a continuous order removal 
function, generates a constantly evolving order book. Obviously, many of these order arrivals interact with the order book and result 
in transactions. Agents are heterogeneous on two dimensions: their demand for immediacy and their informativeness. Agents with 
a high (low) demand for immediacy, typically use market (limit) orders. Informed (uninformed) agents use the fundamental value 
(midpoint) as their price reference point. In our experimental setup, we add a dynamic hedger to this market, with varying degrees 
of gamma positions. As such, we are able to directly observe the effect of dynamic hedging on several metrics of market quality.

Our study reveals that net positive gamma positioning has an overall positive impact on three dimensions of market quality 
compared to a situation without dynamic hedging: volatility, liquidity, and market failure.3 Negative gamma positioning, on the 
other hand, enhances liquidity even more, but at the cost of amplified volatility and increased susceptibility to market failure.4 ,5 Our 
final finding is that price discovery typically worsens when dynamic hedgers become more prevalent, regardless of the sign of their 
positioning, although the channels differ: In positive gamma scenarios price informative signals are absorbed by dynamic hedgers, 
leading to slower price discovery, whereas in negative gamma scenarios, both informative and uninformative signals are amplified, 
leading to overshoots.

We contribute to several strands of literature. First, as indicated above, we study how intermediaries impact market quality, as in 
Baruch et al. (2007); Rappoport and Tuzun (2020); Rösch (2021). We are the first to focus on the market quality effects of dynamic 
hedgers. Secondly, we contribute to the literature on the feedback effect on option pricing as in Bouchard et al. (2015); Almgren 
(2015); Bank et al. (2017, March); Abergel and Loeper (2017); Anderegg et al. (2022). Finally, we contribute to the agent-based 
literature, especially those agent-based models focusing on market microstructure. To give a few examples, Chiarella and Iori (2002)

2 See, e.g., https://www.risk.net/risk-management/market-risk/
3 We define a market failure as a dry-up of liquidity, such that price, volatility, and liquidity are temporarily undefined.
4 Our model setup can explain this counter-intuitive result. In negative gamma scenarios, absolute price shocks tend to be more pronounced, leading the simulation 

to frequently find itself in a deeper part of the order book with more resting orders.
5 Our model does not incorporate higher-order behaviors. We do not assume that market makers want to be compensated for the increased market volatility in the 

negative gamma scenario by posting worse quotes (and thus worsening liquidity). Furthermore, we do not model a rapid deterioration of market liquidity (due to the 
2

retraction of resting quotes) after a large price shock.

https://www.risk.net/risk-management/market-risk/2384515/no-flash-crash-paulson-pimco-and-us-treasury-meltdown
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and Chiarella et al. (2009) study the impact of heterogeneous investors on price formation and order flow in a limit order book 
market. More recently, Biondo (2019) studies the impact of market design on market quality in an agent-based setting. Similar to our 
work, various prior studies have utilized random order arrival processes to model markets; pioneering works such as Farmer et al. 
(2005a) and Farmer et al. (2005b) were among the first to explore the market impact of zero-intelligence traders in a double auction 
framework. Furthermore, Leal et al. (2016) study the generation of flash crashes within a framework where high-frequency traders 
place random orders on both sides of the market. A comprehensive analysis of financial agent-based models involving non-intelligent 
agents is available in Bouchaud (2018). Our contribution to the agent-based literature is the introduction of dynamic hedgers into a 
market populated by zero-intelligence traders, shedding light on new dimensions of market behavior in such scenarios.

Market quality is relevant for institutions that are not themselves secondary market participants, such as policymakers, central 
banks, regulators, and security issuers. This paper aims to elucidate the causal workings and market quality impact of the dynamic 
hedger’s gamma position, such that it could become relevant for such institutions. In particular, we want to stress the fact that net 
gamma positioning is not exogenously given. Indeed, it was the conspiring of Reddit users that jointly created a net short gamma 
position among dynamic hedgers during the meme-stock saga of 2021.6 We recognize that the net gamma position among dynamic 
hedgers is generally best left to the market. However, given the obvious market quality-enhancing potential shown in our paper, the 
net gamma position can be steered to lead to more welfare-enhancing outcomes.

From a policy perspective, our results imply that it would be beneficial to provide incentives to increase the net positive gamma 
position of dynamic hedgers. For many institutions, such as central banks, regulators, and security issuers, utilization of the gamma 
channel might be considered as a policy instrument to improve market quality. Temporarily or permanently altering the net gamma 
position of dynamic hedgers has the potential to improve market quality and is a policy avenue that is hitherto unexplored.

The remainder of this paper is organized as follows. Section 2 presents our model and simulation, and Section 3 explains our 
measures of market quality. Section 4 presents evidence supporting the option position effect of dynamic hedgers on market quality. 
Section 5 concludes.

2. Model and simulation

2.1. Dynamic hedgers

Several types of market participants are indifferent to the fundamental or long-term value of the instruments. As such, they 
should not contribute to the price discovery process as their actions contain no information about the fundamental value of the asset. 
Arbitrageurs bridge supply and demand imbalances between similar instruments and thus only care about the asset price in relation 
to another asset price. Dynamic hedgers are similar in their indifference, as they only wish to trade an asset in order to mimic the 
sensitivity of another asset. An open question is what the presence of dynamic hedgers, who are presumably indifferent, does to 
market quality.

Dynamic hedgers are agents who aim to maintain a constant delta. Examples of such dynamic hedgers are banks, insurers, 
high-frequency trading firms, and hedge funds, which hedge option positions by dynamically replicating their exposure using the 
underlying security. A concrete example is that these institutions can be the writers (sellers) of option contracts, and wish to hedge the 
delta risk of this short option position by taking a long position in the underlying asset. The relation between the prices of an option 
and its underlying asset nonlinear, but convex. In other words, the second derivative of the option price to the underlying price, 
the gamma, is not zero. By definition, the delta of the underlying asset is one, and the gamma is zero. Combined, this makes their 
hedging strategy dynamic, as changes in the price of the underlying alters the delta of the option portfolio; this requires continuous 
re-balancing in the hedge portfolio to maintain an overall delta of zero.

The concept of dynamic hedging is a defining feature of the option pricing literature. The ability to dynamically replicate an option 
makes arbitrage-free valuation possible. The seminal literature regarding option pricing explicitly requires the absence of market 
impact arising from dynamically hedging the replicating portfolio (Black and Scholes, 1973). Successful attempts have been made to 
loosen the assumption of a perfect underlying market by incorporating the hedging impact on realized volatility. This phenomenon 
is called the feedback effect; see Platen and Schweizer (1998), Frey and Stremme (1999), and Wilmott and Schönbucher (2000). 
The central idea is that the transactions arising from market participants who dynamically replicate an option portfolio might have 
market impact. In particular, the gamma determines the magnitude and direction of the market impact. The overall net position of 
dynamic hedgers determines the feedback effect: with a positive (negative) net-gamma position, an increase in prices will lead to an 
increase (decrease) in the delta of dynamic hedgers, forcing them to sell (buy) the underlying, and vice-versa for an initial decrease 
in prices, to maintain a portfolio delta of zero. In other words, dynamic hedgers with a positive gamma have a contrarian strategy 
in the market of the underlying, whereas dynamic hedgers with a negative gamma have a momentum strategy in the market of the 
underlying. Hence, a positive net-gamma position among dynamic hedgers is expected to dampen price movements and volatility, 
whereas a negative gamma position amplifies these. The active trading by dynamic hedgers also directly impacts liquidity through 
the additional orders in the order book, which can be liquidity taking or liquidity making depending on the gamma.

Several authors have incorporated the feedback effect into option pricing models. Bank et al. (2017, March) show how optimal 
hedging strategies are affected by temporary price impact, whereas Bouchard et al. (2015) do so for linear impact. Similarly, Almgren 
and Li (2016) and Abergel and Loeper (2017) show that optimal dynamic hedge strategies are altered when the non-endogeneity 
3

6 See www.forbes.com/gamma.

https://www.forbes.com/sites/georgecalhoun/2021/03/10/gamestop-the-second-surgeanatomy-of-a-gamma-swarm/
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constraint is relaxed. Anderegg et al. (2022) derive a simple expression of the feedback effect under linear permanent market impact. 
We set up an agent-based model in which the orders of the end-users arrive randomly, but the strategy of the dynamic arbitrageur is 
explicit such that we can study their causal impact on market quality.

2.2. Model

This paper illustrates the effect of dynamic hedgers on market quality by utilizing Monte Carlo simulations. A set of agent-

mimicking stochastic order arrival processes in combination with a stochastic news-shock process under a continuous order removal 
decay function generates a constantly evolving order book. Many of these order arrivals interact with the order book and result in 
transactions.

The simulation allows us to draw inferences about the moments of the variables of interest. By varying a subsection of the 
simulation parameters but keeping the same random seeds, we create parallel simulations that isolate the mechanism we aim to 
study. The subsequent subsections describe the elements of the model.

2.2.1. The market

Since our simulation focuses on short time horizons, we assume without loss of generality an asset that does not yield coupons or 
dividends in a world with no time-value of money. The market is represented by a single order book, where both market and limit 
orders are structured as two-dimensional vectors ⟨𝑥, 𝑦⟩ with 𝑥 denoting the volume (negative for sell orders) and 𝑦 denoting the 
price. Bids and offers are placed at discrete multiples of the minimal tick size of 0.01. All orders are considered good-till-canceled, so 
there is no discontinuity between trading days. Limit orders that immediately transact upon placement leave their balance. Orders of 
similar prices are executed based on time priority, which we only have to track for the dynamic hedger. At-market buy and sell orders 
are structured as ⟨𝑥, ∞⟩ and ⟨−𝑥, −∞⟩ respectively. The average of the highest bid, denoted by 𝑝𝑏, and the lowest offer, denoted by 
𝑝𝑜, is considered the mid-price 𝑝.

Because we have events related to the simulation happening at different intervals (order arrivals, hedge actions, news arrivals, 
hedge measurements, and option transactions), we index time over a variety of parameters. Each simulation consists of 𝑇 trading 
sessions, with each trading session 𝑡 being separated into 𝐻 trade intervals. With each trade interval ℎ consisting of 𝑄 sub-intervals. 
Within each sub-interval 𝑞 a number of orders arrive following a Poisson distribution with parameter 𝜆. Time can be uniquely 
mapped to an interval [1, 𝑇 + 𝐻

𝑇
+ 𝑄

𝐻𝑇
] from (𝑡, ℎ, 𝑣) via (𝑡 + ℎ

𝐻
+ 𝑞

𝐻𝑄
).

𝜏𝑡,ℎ,𝑞 = 𝑡+
ℎ

𝐻
+ 𝑞

𝐻𝑄
. (1)

Summing over the re-indexed time 𝜏 is more convenient. Finally, we define 𝜏∗ as the index that identifies every tick:

𝜏∗
𝑡,ℎ,𝑞,𝑙

= 𝑡+ ℎ

𝐻
+ 𝑞

𝐻𝑄
+ 𝑙

𝐻𝑄𝐿𝑡,ℎ,𝑞
, (2)

here 𝑙 denotes the 𝑙’th Poisson arrival and 𝐿𝑡,ℎ,𝑞 represents the total amount of Poisson arrivals in interval (𝑡, ℎ, 𝑞).7 A schematic 
overview of the simulation process is given in Fig. 1.

As will become clear when we introduce the agent behavior, dynamic hedger behavior, and the exogenous news process; THQ 
structure is chosen to let events occur at different intervals. In particular:

• The portfolio of the dynamic hedger is reset every 𝑡.
• Dynamic hedgers are evaluated on their delta position at every ℎ. Additionally, news shocks occur at every ℎ.

• The hedge actions of the dynamic hedger are performed at the end of every 𝑞.
• One (random) new order by a non-dynamic hedger occurs every 𝜏∗, the number of order arrivals per 𝑞 is random. Resting orders 

also decay at every 𝜏∗.

2.2.2. Fundamental value

The news process is a Gaussian random walk whose shocks are independent of the order book state. News shocks cause the 
fundamental price to go up or down. The true price 𝑝∗ at trade interval 𝑡 + ℎ∕𝐻 is given by:

𝑝∗
𝑡+ℎ∕𝐻 = 𝑝∗0 + Σ𝑡+ℎ∕𝐻

𝑖
𝜂𝑖, (3)

with 𝜂𝑖 an independent stochastic process given by 𝜂𝑖 ∼𝑁(0, 𝜎𝑛). The variables 𝑝∗0 and 𝜎𝑛 are simulation input parameters and will 
be discussed in Section 2.3 and Section 4.2 respectively.
4

7 Such that every 𝜏∗ represents an individual order arrival.
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Fig. 1. Schematic overview of the simulation process.

Notes: This figure gives a graphical representation of the simulation model. Each simulation consists of 𝑇 trading sessions, with each trading 
session 𝑡 being separated in 𝐻 trade intervals. With each trade interval ℎ consisting of 𝑄 sub-intervals. Within each sub-interval 𝑞 a number 
of orders arrive following a Poisson distribution with parameter 𝜆. Dynamic hedgers attempt to hedge their delta by sending orders at 𝑞
sub-intervals. Dynamic hedgers are evaluated on their delta position every ℎ interval. Dynamic hedgers empty their entire portfolio every 𝑡
interval, at which they receive new (𝑡 + 2) ATM stradles.

2.2.3. Agent representing stochastic order arrival processes

Our base set-up without a dynamic hedger contains four agent-representing order arrival processes. All of these order arrivals 
have the same volume distribution, given by the uniform distribution.8 Order volumes are not scaled for endowment, i.e., if the asset 
trades lower, the volume metrics such as the traded volume and order-book volume are expected to be equal in nominal terms but 
lower in cash-equivalent terms:

𝑣 ∼𝑈 (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥), (4)

with 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑖𝑛 the boundaries of the uniform volume distribution. Each order arrival is taken from one of the following four 
types:

• Agents (end-users) with a high demand for immediacy:

– Uninformed (noise) end-users: place at-market orders in random direction: ⟨𝑣, ∞⟩ and ⟨−𝑣, −∞⟩ with equal probability.

– Informed end-users: place at-market orders in the direction of the fundamental price: either ⟨𝑣, ∞⟩ if (𝑝 < 𝑝∗) or ⟨−𝑣, −∞⟩ if 
(𝑝 > 𝑝∗).

• Agents (market makers) with a low demand for immediacy:

– Uninformed market makers: place orders at random around a distance from the mid-price: ⟨𝑣, ∼ 𝑁(𝑝 − 𝜇𝑝, 𝜎𝑝)⟩ and ⟨−𝑣, ∼
𝑁(𝑝 + 𝜇𝑝, 𝜎𝑝)⟩ with equal probability.

– Informed market makers: Place orders at random around a distance from the fundamental price: ⟨𝑣, ∼ 𝑁(𝑝∗ − 𝜇𝑝, 𝜎𝑝)⟩ and ⟨−𝑣, ∼𝑁(𝑝∗ + 𝜇𝑝, 𝜎𝑝)⟩ with equal probability.

The parameters 𝜇𝑝 and 𝜎𝑝 describing the order placement distribution for the agents are input variables for the simulation and 
their values will be discussed in Section 2.3. The same goes for the input parameters (𝑢) and (𝑖) that describe the relative proportions 
of order types. In particular, orders with a high demand for immediacy have probability (𝑢), and orders with low demand for 
immediacy have probability (1 − 𝑢). Similarly, informed orders have probability (𝑖) and uninformed orders have probability (1 − 𝑖). 
These order arrival types are independent such that uninformed orders with a high demand for immediacy have probability 𝑖(1 − 𝑢).

Immediacy-demanding agents necessarily consume liquidity from the order book, whereas market makers generally provide 
liquidity. Since their order placement is stochastic, some of their orders actually immediately execute causing them to occasionally 
reduce liquidity.

8 Empirically, order volumes follow a multi-modal distribution, as different type of agents each have their preferred median order size. However, given that our 
5

simulation already requires a lot of parameters to tweak, we keep the volume generation process uniform.
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While these order arrival processes are intended to mimic agent behavior, they are aggregated abstractions and lack any agent-like 
properties. We do not track inventories of individual agents, nor are any of their order placement heuristics strategically considering 
other agents’ behavior.

Due to their directional bias, the order placement heuristic of informed traders is such that they create price pressure towards the 
fundamental price. There is no bias for uninformed orders, as their order placement is symmetric around the current price.

2.2.4. Order removal

The order arrival process is discrete, but as we do not track agent inventory beyond that of the dynamic hedger, our order 
removals cannot be attributed to agent-specific considerations. As such we rely on a continuous approximation of order removals 
that is standard in the differential equations utilized in the market microstructure literature9:

𝑣𝑝𝑖,𝜏
∗
𝑡,ℎ,𝑞,𝑙+1

= 𝑣𝑝𝑖,𝜏∗𝑡,ℎ,𝑞,𝑙 𝑒
−𝜁(𝑝−𝑝𝑖)2 , (5)

with 𝑝 the midprice, 𝑝𝑖 the corresponding price at the 𝑖’th price level of the order book (and thus 𝑣𝑝𝑖 being the resting volume at 𝑝𝑖) 
and 𝜁 a decay parameter. The combination of linear liquidity addition via order arrivals and non-linear decay allows for an order 
book that is consistent with empirically observed limit order book distributions, without having to incorporate higher-order agent 
behavior.

The decay should not have the same periodicity as the dynamic hedger, since this would bias the result. For this reason, the decay 
process happens after each order arrival 𝜏∗ rather than after a fixed time interval. This implies that sub-intervals with more (less) 
order arrivals due to the stochastic nature of the Poisson process also contain more (less) order removals.

2.2.5. The dynamic hedger

The main object of our study is the analysis of the impact of dynamic hedgers’ net gamma position on market quality. We represent 
the collective of dynamic hedgers via a single agent, who buys its options from a single entity. This entity, the counterparty, never 
interacts with the order book. We assume the dynamic hedger and the counterparty are engaged in an evergreen gamma contract, 
i.e. a contract that automatically renews before its term expires. An evergreen gamma contract is given as follows: when the dynamic 
hedger is long (short) the evergreen gamma contract, then every day the dynamic hedger buys (sells) a 𝑡 + 2 at-the-money option 
straddle position from the counterparty and sells (buys) back all the 𝑡 + 1 options it has previously bought (sold), along with the 
full residual position in the underlying asset.10 As such the dynamic hedger with a long (short) evergreen gamma contract starts 
every day with no delta position and a positive (negative) gamma exposure. If the underlying market remains unchanged, the agent 
long (short) the evergreen contract loses (gains) the value between a 𝑡 + 2 and 𝑡 + 1 option straddle. This gain or loss of time value, 
or theta, is always opposite in direction to the gamma position. We assume the evergreen gamma contract is maintained for the 
duration of the entire simulation.11

The dynamic hedger’s orders are not generated stochastically, but based on a predetermined heuristic. Furthermore, the dynamic 
hedger is the only agent whose orders and inventory are being tracked for the purpose of removing or adjusting limit orders. The 
dynamic hedger attempts to minimize its absolute delta, as given by the Black and Scholes sensitivity of its entire portfolio to the 
underlying.12 In our experiment the dynamic hedger has no control over the options within its portfolio, thus the only way to manage 
its delta exposure is by buying or selling the underlying.

We assume that at the end of every interval ℎ during the trading session the dynamic hedger is evaluated on its net delta, i.e. the 
sum of the option delta and the underlying delta. Thus the dynamic hedger aims to minimize its net delta at the end of interval ℎ, 
while allowing the delta to deviate from zero during the interval. More specifically, its hedge heuristic is given by placing a buy (sell) 
order at the end of each 𝑞 with a volume equal to the absolute portfolio delta with a distance to the best offer (bid) proportional to 
𝑞

𝑄
. In particular, the bid is given by13:

9 Bouchaud et al. (2002) note a humped-shape distribution of the order book, suggesting resting orders with a large distance to the current mid-price have a greater 
propensity to be removed.
10 Note that a straddle is a combination of a call and a put option contract with the same strike price and time to maturity. A long (short) straddle position has a 

positive (negative) gamma.
11 Instead of making the evergreen gamma contract explicit via option transactions, one could opt to stipulate that the dynamic hedgers have a constant gamma 

position. Doing so would eliminate the need for having the trading sessions 𝑇 and one could simply simulate an uninterrupted sequence of trading intervals. However, 
gamma is not constant and is also reliant on the distance to the strike price. By constantly re-striking options our simulation is more realistic as dynamic hedgers 
would hedge less aggressively when options are far out of (or in) the money.
12 Note that our price process is not a log-normal Brownian motion (none of the order arrivals are scaled to the underlying price), but a regular Brownian motion. 

As such we apply the classic Black and Scholes formula without using the lognormal Martingale correction. Failing to omit the Martingale correction would result in 
biased delta estimates of the option contract values.
13 One could generalize this heuristic for 𝑄 ≠ 4 via:

⟨𝑥, 𝑦⟩bid =

⟨
−𝛿, 𝑝𝑏 + (𝑝𝑜 − 𝑝𝑏)

(
32
3

(
𝑞

𝑄

)3

− 16
(
𝑞

𝑄

)2

+ 28
3

(
𝑞

𝑄

)
− 2

)⟩
6

and
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⟨𝑥, 𝑦⟩bid =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨−𝛿, 𝑝𝑏 − (𝑝𝑜 − 𝑝𝑏)⟩ if
𝑞

𝑄
= 1

4⟨−𝛿, 𝑝𝑏⟩ if
𝑞

𝑄
= 1

2⟨
−𝛿, 𝑝𝑏 +

1
2 (𝑝𝑜 − 𝑝𝑏)

⟩
if

𝑞

𝑄
= 3

4⟨−𝛿, 𝑝𝑜⟩ if
𝑞

𝑄
= 4

4
,

(6)

whereas the offer is given by:

⟨𝑥, 𝑦⟩offer =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨−𝛿, 𝑝𝑜 + (𝑝𝑜 − 𝑝𝑏)⟩ if
𝑞

𝑄
= 1

4⟨−𝛿, 𝑝𝑜⟩ if
𝑞

𝑄
= 1

2⟨
−𝛿, 𝑝𝑜 −

1
2 (𝑝𝑜 − 𝑝𝑏)

⟩
if

𝑞

𝑄
= 3

4⟨−𝛿, 𝑝𝑏⟩ if
𝑞

𝑄
= 4

4
.

(7)

Since dynamic hedgers attempt to keep their delta constant by trading the underlying, the volumes are given by −𝛿. The time-

based mixed strategy where the dynamic hedger switches from passive to aggressive orders is equivalent to Ellersgaard and Tegnér 
(2017).

2.2.6. Transactions between counterparty and dynamic hedger

Every day the dynamic hedger and the counterparty roll over their existing option contracts. While the valuation of this option 
is by itself not required to demonstrate the feedback effect on market quality, the option delta is. The option delta is a component of 
the portfolio delta, which is an input to the hedge heuristic. For the evaluation of the Greeks, we assume a constant implied volatility 
term structure and assume homoskedasticity of implied volatility throughout the simulation. Since there are no news shocks outside 
the trading sessions and the order book does not empty overnight, there are no jumps in prices in between trading sessions. As such 
we can use the time, interval, and sub-interval mapping for intraday option Greek evaluation. Specifically, we denote the auxiliary 
variables 𝑑1,𝜏,𝑡 and 𝑑2,𝜏,𝑡14:

𝑑1,𝜏,𝑡 =
𝑝𝜏 −𝐾

𝜎
√
(𝑚− 𝜏)

, (8)

𝑑2,𝜏,𝑡 = 𝑑1,𝜏,𝑡 − 𝜎2
√
(𝑚− 𝜏), (9)

for an option written on time 𝑡, with implied volatility 𝜎 evaluated at time 𝜏 . 𝐾 denotes the option strike, 𝑝𝜏 the midprice at time 𝜏
and 𝑚 the corresponding maturity time.

A straddle is an option position consisting of a put and a call with the same strike. Then the valuation of the option straddle with 
strike 𝐾 is given by:

𝑁𝑃𝑉𝑝𝑢𝑡+𝑐𝑎𝑙𝑙,𝜏 = 2Φ(𝑑1)𝑝𝜏 − 2Φ(𝑑2)𝐾, (10)

with Φ the cumulative normal distribution. The delta for the straddle is given by:

𝛿𝑝𝑢𝑡+𝑐𝑎𝑙𝑙,𝜏 = 2Φ(𝑑1) − 1. (11)

Since Φ(𝑑1) = 0.5 when 𝑝𝜏 = 𝐾𝑡, which is the case at the onset of a new contract. Hence, the straddle starts with 𝛿 = 0. We do 
not require other Greeks for the heuristic, but we can track the gamma position to quantify the relation of gamma to market quality. 
The straddle-gamma is given by:

𝛾𝑝𝑢𝑡+𝑐𝑎𝑙𝑙,𝜏 =
2𝜙(𝑑1)

𝑆𝜎
√
𝑚− 𝜏

, (12)

with 𝜙 the standardized normal probability density function. Since 𝜙 is maximized when 𝑑1 = 0, the strike where 𝑝𝜏 = 𝐾𝑡 gives 
maximum gamma. Furthermore, lower values of (𝑚 − 𝜏) provide more gamma than higher values of (𝑚 − 𝜏). Thus short-dated 
at-the-money straddles exhibit the most gamma whilst exhibiting no initial delta.

⟨𝑥, 𝑦⟩offer =

⟨
−𝛿, 𝑝𝑜 − (𝑝𝑜 − 𝑝𝑏)

(
32
3

(
𝑞

𝑄

)3

− 16
(
𝑞

𝑄

)2

+ 28
3

(
𝑞

𝑄

)
− 2

))⟩.
A 3rd degree polynomial equation that equals Eq. (6) and Eq. (7) when 𝑄 = 4.
7

14 These auxiliary variables are used to make the subsequent formulas more compact and readable.
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Table 1

Benchmark parameter setting.

Ticksize 0.01 𝜎𝑝 0.1

𝑁 100 𝜇𝑝 -0.1

𝑇 20 𝜎 0.089

𝐻 10 𝑣𝑚𝑖𝑛 0

𝑄 4 𝑣𝑚𝑎𝑥 1

𝜆 40 𝑝0 5

𝑢 0.3 𝜇𝑛 0

𝑖 0.25 𝜎𝑛 0

𝜁 0.05

Notes: This table gives the benchmark pa-

rameter settings of the simulation model 
used in Section 4.1. The same parameters 
are used for Section 4.2, however there 
news shocks are added to the simulation 
such that 𝜎𝑛 = 0.1 rather than 0.

2.3. Simulation parameters and initialization

We logically limit our analysis to simulations with parameters that result in a stable order book evolution. A 𝑢 parameter that is 
too high, representing too much demand for immediacy, will result in more liquidity being consumed than provided, which increases 
the likelihood of market failure. This also holds for 𝜁 (order decay propensity), 𝜎𝑝 (standard deviation of order placement of informed 
market makers), and more. Since our main market quality metrics are unusable in the case of market failure, we simulate a market 
that is not prone to fail using the following characteristics, as displayed in Table 1.

Our asset has a tick size of 0.01 and starts at 𝑝0 = 5.15 The incoming orders are split 75/25 between market makers and market 
takers (𝑖 = 0.25). The market makers, agents with a low demand for immediacy, place bids (offers) normally distributed 10 cents 
below (above) their reference price with a standard deviation of 0.1 (i.e., 𝜇𝑝 = −0.1 and 𝜎𝑝 = 0.1). For informed market makers, this 
reference price is the fundamental price 𝑝∗, whereas for the uninformed market makers, this is the mid-price 𝑝. In our simulation, 
we use 𝑢 = 0.3 meaning that 30 percent of the market makers and market takers place their orders conditional on the (latent) 
fundamental price and (1 − 𝑢) = 0.7 place their orders conditional on the current mid price. Volumes are uniformly distributed 
between [0, 1].16

Our 𝑁 = 100 simulation paths span 𝑇 = 20 trading sessions each, all consisting of 𝐻 = 10 trading intervals, which consist of 
𝑄 = 4 trading sub-intervals. During each of these sub-intervals, a random number of Poisson distributed 𝜆 orders arrive, excluding 
one additional order for the dynamic hedger, which is the first one to execute its order during each interval. We initialize an order 
book with 10.0 volume on the bid and offer side at [4.94, 4.96, 4.98, 5.02, 5.04, 5.06]. The decay parameter 𝜁 = 0.05, in conjunction 
with the initialized order book, ensures the order book’s exponential decay matches the net liquidity production after approximately 
one trading session. For this reason, we omit all data before the second trading session.

Preliminary analysis showed that the simulation parameters produce a realized price standard deviation of 𝜎 = 0.089.17 ,18 This 
standard deviation is used for the evaluation of the option contracts, most notably for the determination of the option delta.

3. Market quality metrics

As noted in the introduction, we study the effect of gamma positioning on four dimensions of market quality. We operate under 
the assumption that low volatility, high market liquidity, and high (/fast) price discovery are intrinsically good characteristics of 
markets and that market failure is undesirable in the eyes of end users.

3.1. Volatility

If we denote a price shock via:

𝜖𝜏 = 𝑝𝜏 − 𝑝𝜏−1, (13)

where 𝑝𝜏 is the mid market price at 𝜏 , and the mean shock by:

𝜖 = 1
𝑇𝐻𝑄

𝑇𝐻𝑄∑
𝜏=1

𝜖𝜏 , (14)

15 This price is set mainly for computational reasons, as it allows us to initialize an order book from 0.01 to 10.0 with a negligible probability of orders being placed 
out of bounds.
16 All input variables are chosen by the authors and are not derived from data.
17 Not shown here, but available upon request. The effect of this parameter is negligible for options with a very short time to expiry.
8

18 Not to be confused with the dispersion of market makers’ order placement 𝜎𝑝 and the standard deviation of the random walk of the news process 𝜎𝑛 .
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then we can sample the average standard-deviation of price shocks across the simulations19:

𝑆1 =
1
𝑁

𝑛∑
𝑛=1

1
𝑇𝐻𝑄

𝑇𝐻𝑄∑
𝜏=1

(𝜖𝑛 − 𝜖𝜏,𝑛)2. (15)

Furthermore, we track the differential between the highest price and lowest price via the high-low spread of a single simulation 
by:

𝑆2 =
1
𝑁

𝑁∑
𝑛=1
𝑚𝑎𝑥(𝐩𝐧) −𝑚𝑖𝑛(𝐩𝐧), (16)

where 𝐩𝐧 is vector of mid-prices (at every 𝜏∗) of the n-th simulation.

We also look at more specific downside risks and analyze average percentile-based shocks. In particular, we denote 𝜖∗0.95,𝑄 as the 
subperiod-shock that is lower than 95 percent of other subperiod-shocks. Similarly, 𝜖∗0.99,𝑄 as the subperiod-shock that is lower than 
99 percent of other subperiod-shocks. Finally, we denote 𝜖∗0.95,𝑇 as the daily shock that is lower than 95 percent of other daily shocks. 
Due to symmetry in the simulation parameters, studying the negative shocks suffices.

Subsequently, we denote:

𝑆3 =
1
𝑁

𝑁∑
𝑛=1
𝜖∗0.95,𝑄, (17)

𝑆4 =
1
𝑁

𝑁∑
𝑛=1
𝜖∗0.99,𝑄, (18)

and

𝑆5 =
1
𝑁

𝑁∑
𝑛=1
𝜖∗0.95,𝑇 , (19)

as the sample averages of the downside risk measures.

3.2. Market liquidity

We utilize four different measures for liquidity: the average bid-ask spread, the average total posted volume, the total traded 
volume, and a price impact measure.

The bid-ask spread averaged over time, per simulation, is given by:

𝐿1 =
1
𝑁

𝑁∑
𝑛=1

∑𝑇𝐻𝑄

𝜏=1 𝑝𝑜,𝜏,𝑛 − 𝑝𝑏,𝜏,𝑛
𝑇𝐻𝑄

, (20)

where 𝑝𝑜,𝜏,𝑛 represents the best offer price, and 𝑝𝑏,𝜏,𝑛 the best bid price (at time 𝜏 in simulation 𝑛). The total order book volume 
averaged over time and per simulation is given by:

𝐿2 =
1
𝑁

𝑁∑
𝑛=1

1
𝑇𝐻𝑄

𝑇𝐻𝑄∑
𝜏=1

𝑝𝑚𝑎𝑥∑
𝜌=𝑝𝑚𝑖𝑛

|𝑣𝜌,𝜏,𝑛|, (21)

where |𝑣𝜌,𝜏,𝑛| denotes the absolute order book volume at price level 𝜌 used as an index variable, at time 𝜏 in simulation 𝑛. Summation 
is done over the whole range of outstanding order price levels in the order book, so between the lowest order 𝑝𝑚𝑖𝑛 and the highest 
order 𝑝𝑚𝑎𝑥. Traded volume 𝐿3 quantifies the total volume traded, averaged over the simulations.

We combine price and volume information in a hybrid liquidity measure by means of the limit order book slope (LOS), as defined 
in Buis et al. (2020), which we transform here to:

𝐿4 =
1
𝑁

𝑁∑
𝑛=1

1
𝑇𝐻𝑄

𝑇𝐻𝑄∑
𝜏=1

𝑝𝑚𝑎𝑥∑
𝜌=𝑝𝑚𝑖𝑛

𝑣𝜌,𝜏,𝑛

𝑝𝜏,𝑛 − 𝜌
, (22)

where the fraction 00 entry is put to 0, if applicable. In this measure, order book volumes are divided by price distance such that 
volumes closer to the mid-price have a greater weighting in the measure.20

19 𝑇𝐻𝐶 denotes the total of all sub-trading intervals 𝑄 within the trade intervals 𝐻 within the trading sessions 𝑇 .
9

20 Note that no absolute sign is needed, as offer volumes are negative but 𝑝𝜏,𝑛 − 𝜌 is negative as well (offers are by definition higher than the mid-price).
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3.3. Price discovery

While price discovery is a pervasive topic in the empirical literature (Hasbrouck, 1995), we have the luxury of knowing the 
fundamental value of the asset via the latent news process. First, we quantify price discovery by measuring the squared distance 
between the mid-price 𝑝 to the (latent) fundamental price 𝑝∗:

𝐷1 =
1
𝑁

𝑁∑
𝑛=1

∑𝑇𝐻𝑄

𝑡=1 (𝑝∗
𝜏,𝑛

− 𝑝𝜏,𝑛)2

𝑇𝐻𝑄
. (23)

Another way of quantifying price discovery is by correlating trading interval 𝜖ℎ price shocks with the prior 𝜂ℎ−1 news shocks. 
This quantifies the degree by which the order book responds to news shocks:

𝐷2 =
1
𝑁

𝑁∑
𝑛=1

∑𝑇𝐻

𝜏=2((𝜂𝑛 − 𝜂ℎ−1,𝑛)(𝜖𝑛 − 𝜖ℎ,𝑛))√∑𝑇𝐻

𝜏=1(𝜖𝑛 − 𝜖ℎ,𝑛)2
√∑𝑇𝐻

𝜏=1(𝜂𝑛 − 𝜂ℎ,𝑛)2
. (24)

Note that, as opposed to other market quality variables, 𝐷2 is calculated at the trading interval level, similar to Equation (13) but 
instead using 𝜖ℎ = 𝑝ℎ − 𝑝ℎ−1, since news shocks only occur at the beginning of each trading interval.

Finally, we measure price discovery as the degree to which positive price shocks are followed by negative price shocks. As noted 
before, shocks induced by uninformed investors are not informative, and therefore transitory and should be reversed. One way to 
measure the speed of mean reversion is by the first-order autocorrelation of price shocks, as given by:

𝐷3 =
1
𝑁

𝑁∑
𝑛=1

∑𝑇𝐻𝑄

𝜏=2 ((𝜖𝑛 − 𝜖𝜏,𝑛)(𝜖𝑛 − 𝜖𝜏−1,𝑛))∑𝑇𝐻𝑄

𝜏=1 (𝜖𝑛 − 𝜖𝜏,𝑛)2
. (25)

4. Results

4.1. Market without exogenous news shocks

This section analyzes a market where there is no news arrival process. By putting 𝜎𝑛 = 0, we ensure that the (latent) fundamental 
price is constant 𝑝∗ = 5. The reason we start without the news process is to isolate the gamma channel in a very controlled simulation 
environment. The results for the market with news are presented in Section 4.2. We vary in the gamma dimension by letting the 
evergreen gamma contract range from [−80, 80] option contracts (with negative numbers indicating that the dynamic hedger has a 
short option position), with increments of 20.

First, we present a grid of figures of one representative simulation path with -80, 0, and 80 options in Fig. 2. The figure in the top 
left quadrant shows the time series of the price process around the fundamental value of five. We clearly observe that the variability 
is substantially less in the setup with +80 contracts compared to the other two settings. The top right quadrant displays the order 
book volume over time. We observe that the volume is generally higher in the case of a positive gamma position, followed by a 
negative position, and no position. The bottom left quadrant shows the shape of the order book. Both situations including options 
clearly increase the depth of the book; the shape, however, depends on the sign. The variety in distributions provides clarity on how 
gamma positioning affects the shape of the order book: negative gamma positioning (among dynamic hedgers) seemingly bolsters 
liquidity close to the mid-price, whereas positive gamma positioning reinforces deep order liquidity. The bottom right quadrant, 
finally, shows a time series of the bid-ask spreads. These are the lowest for the negative gamma situation, followed by the positive 
gamma and neutral setups.

Fig. 3 shows the price distribution of prices in the three cases. In all cases, the distributions are symmetric around the fundamental 
value, but there are differences in the spread. Clearly, the price is closest to the fundamental value of 5.0 in the setup with positive 
gamma. The setup with negative gamma, on the other hand, gives a more pronounced spread around the fundamental value.

The statistical results are presented in Table 2. We report the general statistics and Greeks (panel A) and the statistical moments 
(panel B) as outright statistics, and the market quality metrics (panel C, D, and E) as ratios to the baseline of no dynamic hedgers (0 
option contracts). Appendix A Tables A1 and A2 gives the actual numbers.

First, with respect to the Greeks of the dynamic hedger, two observations can be made. The long evergreen gamma contracts have 
a lower absolute delta and a higher absolute gamma on average.21 It can thus be concluded that the hedge heuristic is more effective 
for long gamma positions, as it has a smaller absolute delta position at the measurement moment on average. This implies that there 
is less liquidity available for the short gamma hedger, right before the measurement moment compared to the dynamic hedger with 
a long gamma position. The Greeks demonstrate that when both long and short strategies are subject to the same delta constraints, 
the short strategies need to opt for a more aggressive hedge heuristic to achieve the same results. Thus our observed effect of market 
quality worsening under short gamma hedgers is slightly understated.

When looking at market volatility, we observe the feedback effect in the dispersion of the observed mid-prices, thereby corrob-

orating the directional findings of Anderegg et al. (2022): the standard deviation of the price shocks decreases with the net gamma 
10

21 The delta and gamma, calculated by Equations (11) and (12), are averaged across all 𝜏 .
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Fig. 2. Graphical results of the simulation without exogenous news shocks.

Notes: This figure shows one representative simulation path for the model without news shocks. Top left: time series plot of prices depicting 
the short gamma (-80 options), no dynamic hedger (0 options), and the long gamma scenario (80 options) as well as the fundamental price. 
Top right: Volume development, with the offer side depicted with negative volumes, for three gamma scenarios. Bottom left: An order book 
frequency plot of three gamma scenarios scaled around the mid-price. Bottom right: time-series plot of the bid-ask spread for three gamma 
scenarios. For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.

Fig. 3. Price distributions.

Notes: This figure shows the price distribution of the underlying for three gamma scenarios, given a constant fundamental value of 5.0. The 
price distributions clearly show that the standard deviation decreases (increases) when dynamic hedgers are long (short) option contracts. For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.

position. We observe a non-linear relation between the gamma position and market volatility, as illustrated by the higher effect size 
variation between the most negative scenarios compared to the positive scenarios. This is also reflected in the average high-low 
spread between simulations. The presence of dynamic hedgers, who are short gamma and thus trade in the same direction as the 
price shock, severely increases the degree by which prices overshoot in either direction.

From a price discovery perspective, we observe that the autocorrelation of price shocks is strongly linked to the number and 
11

direction of evergreen gamma contracts: the inherent autocorrelation of -0.254 flipping sign to a positive 0.091, with the largest 
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Table 2

Simulation results without news shocks.

#options -80 -60 -40 -20 0 20 40 60 80

Panel A: General and Greeks

Returns 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean absolute delta 16.390 11.161 7.593 4.253 0 4.311 7.272 9.375 11.203

(0.279) (0.215) (0.144) (0.047) (0.000) (0.048) (0.060) (0.068) (0.061)

Average Gamma -117.750 -89.010 -59.520 -29.810 0 29.890 59.840 89.840 119.810

(0.205) (0.091) (0.042) (0.010) (0.000) (0.009) (0.014) (0.019) (0.022)

Panel B: Moments

Bid mean -0.103 -0.115 -0.128 -0.14 -0.151 -0.133 -0.119 -0.109 -0.101

(0.002) (0.002) (0.001) 0.000 0.000 0.000 0.000 (0.001) (0.001)

Bid standard dev. 0.033 0.032 0.032 0.032 0.033 0.035 0.036 0.038 0.039

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid skewness 7.685 7.261 7.215 7.513 7.791 8.466 8.919 9.377 9.733

(0.110) (0.069) (0.042) (0.032) (0.015) (0.020) (0.038) (0.032) (0.039)

Bid kurtosis 64.015 56.524 55.987 61.156 66.035 78.136 86.935 96.348 103.981

(2.049) (1.190) (0.712) (0.543) (0.257) (0.385) (0.759) (0.695) (0.861)

Panel C: Volatility

S.1 St.dev. 1.789 1.474 1.211 1.053 1.000 0.816 0.711 0.632 0.579

(0.162) (0.131) (0.101) (0.076) (0.068) (0.065) (0.042) (0.040)

S.2 High-low spread 2.474 1.798 1.393 1.133 1.000 0.827 0.734 0.694 0.671

(0.145) (0.091) (0.098) (0.031) (0.022) (0.024) (0.020) (0.019)

Panel D: Price Discovery

D.1 Auto Corr. -0.358 -0.146 -0.055 0.331 1.000 1.417 1.429 1.378 1.366

(0.068) (0.040) (0.051) (0.038) (0.066) (0.073) (0.067) (0.067)

D.2 Sqd.price err 3.703 2.617 1.712 1.001 1.000 0.746 0.586 0.535 0.153

(0.790) (0.134) (0.045) (0.020) (0.030) (0.075) (0.121) (0.220)

Panel E: Liquidity

L.1 Bid-Ask spread 0.403 0.472 0.583 0.750 1.000 0.875 0.792 0.722 0.681

(0.004) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.003)

L.2 Traded vol. 1.439 1.320 1.220 1.119 1.000 1.063 1.106 1.138 1.169

(0.008) (0.006) (0.007) (0.004) (0.004) (0.004) (0.004) (0.005)

L.3 Order book vol. 2.367 1.814 1.463 1.223 1.000 1.526 2.055 2.577 3.054

(0.048) (0.045) (0.012) (0.008) (0.013) (0.016) (0.021) (0.036)

L.4 LOS 2.534 2.110 1.714 1.318 1.000 1.200 1.421 1.696 1.892

(0.301) (0.211) (0.123) (0.105) (0.091) (0.112) (0.128) (0.164)

Notes: This table gives the general statistics (Panel A), statistical moments of the bid-price relative to the mid-price (Panel B), 
volatility (Panel C), Price Discovery (Panel D), and Liquidity (Panel E) metrics for the simulation model without exogenous news. 
The simulation parameters are given in Table 1. All metrics are averages over the 100 simulation paths; numbers in parentheses 
represent standard errors over the 100 paths. Panel C, D, and E are reported as ratios to the base case scenario of 0 gamma contracts. 
The reported standard errors are calculated as the standard error of ratios of means.

negative gamma short position among dynamic hedgers. Long gamma positions greatly improve price discovery, with autocorrelation 
dropping to -0.347 for the biggest long gamma position.22 When looking at the squared pricing error, we also observe that positive 
(negative) gamma positions decrease (increase) the pricing error, and thus increase (decrease) price discovery and the efficiency of 
the price process.

At first glance, the liquidity measures seem to reflect ambivalence with regard to the sign of the dynamic hedger’s gamma position. 
Bid-ask spreads decrease and traded volume increases regardless of the sign of the overall net gamma position. Indeed, regardless of 
the sign, the hedge heuristic polynomial dictates that the dynamic hedger is a liquidity provider in 75% of the cases and in at least 
50% of the cases it does so within the spread. However, further examining the traded volumes and the frequency distribution of the 
order book reveals directional effects: the traded volume is higher for short gamma positions compared to long gamma positions of 
similar magnitude, signaling that short gamma hedgers consume more liquidity relative to their long gamma counterparts. This is 
also reflected in the order book volumes: 80 long contracts increase the summed order book volume by 205 percent whereas 80 short 
contracts do so by only 137 percent. Finally, the LOS and bid-offer measures seem to favor the short gamma scenarios in terms of liq-

uidity. To analyze this counterintuitive finding further, we add four measures to Table 2 in Panel B that capture the shape of the order 
book. Whereas the mean and standard deviation of the bids in the order book are quite similar for positive and negative gamma po-

sitions, the skewness and kurtosis are substantially higher for positive than for negative gamma positions. This implies that although 
the bid-ask spread in the simulation with positive gamma contracts is higher than with negative gamma, the order book is able to 
digest a larger amount of buys with limited price impact because there is a larger amount of volume posted close to the best bid.

22 The in text numbers are the actual autocorrelations, found in Appendix A Tables A1 and A2, instead Table 2 presents them as auto correlations relative to the 
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base scenario without gamma hedgers.
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Fig. 4. Graphical results of the simulation with exogenous news shocks.

Notes: This figure shows one representative simulation path, for the model with news shocks. Top left: time series plot of prices depicting 
the short gamma (-80 options), no dynamic hedger (0 options) and the long gamma scenario (80 options) as well as the fundamental price. 
Top right: Volume development, with the offer side depicted with negative volumes, for three gamma scenarios. Bottom left: An order book 
frequency plot of three gamma scenarios scaled around the mid-price. Bottom right: time-series plot of the bid-ask spread for three gamma 
scenarios. For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.

4.2. Market quality in the presence of exogenous news shocks

While the previous analysis provides us with insights regarding the effect of dynamic hedgers in a controlled setting, the simula-

tion is too static with pricing fluctuation around the equilibrium value of 𝑝 = 5.0. With no exogenous news shocks, it never occurs 
that vast quantities of order book liquidity are being consumed, such that the price jumps to a level far from the fundamental value. 
Furthermore, by having a fundamental price that is unchanged, the informed traders will sell when prices rise and buy when prices 
drop. Such behavior makes them act functionally similar to dynamic hedgers who are long gamma, biasing the results. If we instead 
introduce news shocks to the fundamental value and set 𝜎𝑛 = 0.01, we will not only generate more realistic price paths, and thus 
more realistic order book liquidity dynamics, but this will also allow us to study the effect of gamma on price discovery.

As in the previous section, we first visually inspect one representative simulation path with -80, 0 and 80 options, see Fig. 4. The 
top left quadrant shows again the time series of prices. The fundamental price is now moving stochastically. The setup with negative 
gamma again clearly shows increased volatility. The top right quadrant displays the evolution of the order book and is consistent 
with Fig. 2 in the sense that both positive and negative gamma positions increase the order book volume, especially for positive 
gamma. The order book’s configuration is depicted in the bottom-left quadrant. Positive and negative gamma positions contribute 
to the overall volume in the book. Our findings confirm that the distributions are influenced by the dealer option positioning’s sign. 
Although the shapes of the figures share a resemblance, it is important to note the varying scale on the y-axis when comparing 
Fig. 2 to Fig. 4. Positive gamma positions result in a prominent peak around -0.1, indicating a capacity to absorb substantial price 
shocks, albeit with visibly less liquidity around the mid-price compared to scenarios with negative gamma positions. The bottom 
right quadrant, finally, shows the evolution of the bid-ask spread over time. Fig. 4 confirms that both gamma setups decrease the 
spread, but the negative gamma setup does so even more than the positive gamma setup.

The statistical results for the setup with exogenous news over the 100 simulation paths are presented in Table 3. An immediate 
observation that can be made from Panel A, is that there is an asymmetry in the degree by which gamma hedgers contribute to the 
total order flow: the larger the shocks, the greater the delta that needs to be hedged by the dynamic hedgers.

Overall, the simulation including exogenous shocks also captures the feedback effect. Given that this is a more realistic scenario, 
we also include the tail-risk measures. At the highest granularity, we observe no worsening of tail risk with negative gamma positions: 
indeed both the positive and negative gamma inventories among dynamic hedgers reduce the amplitude of the most extreme shocks. 
This result can be explained by the overall increase in market liquidity that the dynamic hedgers provide. However, when we consider 
daily shocks, the results coincide with the diffusion metrics: The more negative the gamma position the greater the daily tail risk. This 
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result can be extended for positive gamma positions, where large positive gamma positions greatly reduce the tail risk measured on 
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Table 3

Simulation results with a news process.

#options -80 -60 -40 -20 0 20 40 60 80

Panel A: General and Greeks

Proportion of flow 0.524 0.401 0.295 0.192 0.000 0.181 0.271 0.331 0.366

Returns 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean absolute delta 18.448 12.174 7.682 4.056 0 3.819 6.457 8.530 10.302

(0.196) (0.109) (0.044) (0.017) (0.000) (0.017) (0.028) (0.032) (0.035)

Average Gamma -117.610 -88.995 -59.631 -29.905 0 29.979 60.031 90.102 120.200

(0.429) (0.315) (0.213) (0.105) (0.000) (0.104) (0.204) (0.299) (0.384)

Panel B: Moments

Bid mean -0.105 -0.115 -0.126 -0.138 -0.148 -0.132 -0.122 -0.114 -0.108

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid standard dev. 0.033 0.032 0.031 0.031 0.032 0.033 0.034 0.035 0.036

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid skewness 7.563 7.215 7.063 7.212 7.424 7.838 8.115 8.362 8.637

(0.024) (0.016) (0.011) (0.009) (0.008) (0.013) (0.017) (0.019) (0.022)

Bid kurtosis 61.840 55.875 53.483 56.065 59.662 66.522 71.342 75.838 81.082

(0.423) (0.265) (0.177) (0.151) (0.132) (0.229) (0.306) (0.368) (0.430)

Panel C: Volatility

S.1 St.dev. 1.243 1.122 1.043 1.009 1.000 0.957 0.922 0.887 0.852

(0.056) (0.052) (0.050) (0.049) (0.048) (0.047) (0.046) (0.046)

S.2 High-low sprd 1.380 1.197 1.080 1.033 1.000 0.920 0.867 0.828 0.782

(0.051) (0.043) (0.039) (0.038) (0.036) (0.035) (0.035) (0.034)

S.3 Q-shock .05% 0.637 0.851 1.151 1.176 1.000 0.902 0.828 0.750 0.500

(0.006) (0.009) (0.011) (0.011) (0.008) (0.008) (0.007) (0.003)

S.4 Q-shock .01% 0.724 0.914 1.172 1.155 1.000 0.931 0.862 0.828 0.379

(0.012) (0.014) (0.017) (0.017) (0.013) (0.012) (0.013) (0.004)

S.5 H-shock .05% 2.596 1.840 1.372 1.106 1.000 0.851 0.766 0.713 0.617

(0.104) (0.078) (0.047) (0.038) (0.027) (0.027) (0.023) (0.022)

Panel D: Price Discovery

D.1 Auto Corr. -0.504 -0.242 -0.075 0.298 1.000 1.409 1.425 1.409 1.369

(0.025) (0.016) (0.016) (0.016) (0.021) (0.021) (0.021) (0.020)

D.2 Sqd.price err 7.617 3.461 1.728 0.917 1.000 0.883 1.810 2.673 3.514

(0.547) (0.124) (0.040) (0.017) (0.009) (0.016) (0.022) (0.029)

D.3 𝜌(news,price) 0.330 0.429 0.516 0.703 1.000 0.912 0.714 0.604 0.495

(0.045) (0.036) (0.037) (0.040) (0.053) (0.041) (0.039) (0.037)

Panel E: Liquidity

L.1 Bid-Ask sprd 0.406 0.478 0.594 0.754 1.000 0.870 0.768 0.696 0.652

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L.2 Traded vol. 1.456 1.329 1.217 1.114 1.000 1.066 1.112 1.150 1.183

(0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

L.3 Order book vol. 2.419 1.843 1.456 1.206 1.000 1.421 1.792 2.130 2.455

(0.019) (0.012) (0.006) (0.005) (0.006) (0.009) (0.012) (0.016)

L.4 LOS 2.653 1.971 1.507 1.188 1.000 1.192 1.418 1.648 1.905

(0.104) (0.067) (0.043) (0.028) (0.028) (0.034) (0.040) (0.050)

Notes: This table gives the general statistics (Panel A), statistical moments of the bid-price relative to the mid-price (Panel B), 
volatility (Panel C), Price Discovery (Panel D), and Liquidity (Panel E) metrics for the simulation model with exogenous news shocks. 
The simulation parameters are given in Table 1. All metrics are averages over the 100 simulation paths; numbers in parentheses 
represent standard errors over the 100 paths. Panel C, D, and E are reported as ratios to the base case scenario of 0 gamma contracts. 
The reported standard errors are calculated as the standard error of ratios of means.

a daily frequency. The discrepancy between tail risk measures at different timescales can be attributed to the simulation set-up and 
hedge heuristic.23 Dynamic hedgers holding positive gamma positions counteract market shocks, thereby reducing autocorrelation 
and preventing the accumulation of large shocks at the hourly and daily levels. Conversely, negative gamma positions among dynamic 
hedgers compel them to trade in the direction of the market, exacerbating autocorrelation and magnifying shock magnitudes at the 
hourly and daily levels.

When observing the squared pricing error and the correlation of lagged news shocks with price shocks, it can be inferred that 
dynamic hedgers generally worsen price discovery. Indeed, by trading unconditionally on the fundamental price they act as noise 
traders. The precise mechanism by which gamma positioning affects price discovery will be studied in Section 4.3. The worsening of 
price discovery, though, is stronger for negative gamma simulations than for positive gamma simulations.

23 We note that at the lowest time frequency (the quarter-hourly scale), the hedge heuristic effectively mitigates the occurrence of extreme values in price shocks. 
However, in the negative gamma scenario, the heightened auto-correlation of these quarter-hourly price shocks does result in increased extreme values at aggregated 
14

time frequencies.
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Table 4

Simulation results price discovery event study.

#options -80 -60 -40 -20 0 20 40 60 80

Time to 𝑛th cross

n=1 11 12 11 11 12 22 29 42 53

n=2 57 45 32 18 14 23 31 43 54

n=3 60 46 33 20 16 26 35 47 58

n=10 109 63 55 39 34 44 52 59 77

n=20 149 130 95 71 54 62 82 94 108

n=100 617 509 414 315 326 369 347 329 360

Mean crossing time

Steady state (n>20) 5.810 4.190 3.095 4.381 4.333 2.952 2.619 2.762 2.571

Notes: This table shows the average crossing times of 100 simulations. A crossing time is the number of subintervals 
it takes the mid-price 𝑝 to cross the fundamental price 𝑛 times after the fundamental price 𝑝∗ drops from 5.0 to 
4.0. The bottom row gives the mean crossing time after the fundamental has dropped and the price has already 
crossed the fundamental price 20 times.

Fig. 5. Event study.

Notes: This figure depicts the average price development of 100 simulations whereby the fundamental price drops from 𝑝 = 5.0 to 𝑝 = 4.0 at 
𝜏 = 40 under different gamma positions amongst dynamic hedgers. For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.

The liquidity measures, finally, seem to suggest that dynamic hedgers improve market liquidity, and those with negative gamma 
improve the bid-ask spread whereas those with positive gamma improve overall volumes. This is similar to the case with the constant 
fundamental in Table 2.

4.3. Price discovery event study

From a price discovery perspective, dynamic hedgers act as noise traders. However, given the way these dynamic hedgers act 
conditional on their gamma position, it is worthwhile to investigate in more detail how they distort price discovery.

In this simulation, we analyze price discovery, price overshoots, and pinning more closely. We will employ the exact same 
simulation conditions as in the previous section, except we change the way our latent variable is constructed. We do so by making 
the fundamental price discontinuous; in particular 𝑝∗ = 5 − 𝐼𝑡>1, where 𝐼 is an indicator function which is one if (𝑡 > 1) and zero 
otherwise. Thus the fundamental price is no longer a random walk, it starts at five in the first trading session such that the order 
book is properly filled and from the second trading session on it drops to four.

Subsequently, we analyze the time it takes for the mid-price to reach the new fundamental price under different gamma positions 
among dynamic hedgers. Furthermore, we can analyze the time it takes to cross this price twice, three times, etc., such that we can 
see if the price overshoots the fundamental price. Finally, we can measure the mean crossing time in equilibrium: if the market price 
has already crossed the fundamental price 20 times, we can measure the average time for another crossing.

Table 4 and Fig. 5 distinctly reveal the inhibiting impact of gamma on price discovery. The first-crossing analysis clearly reveals 
how positive gamma impedes price discovery. Notably, scenarios featuring non-positive gamma exhibit a mean time to achieve 
the first price between 11-12 subintervals, roughly equivalent to three trading hours. However, scenarios characterized by positive 
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gamma extend this duration significantly, requiring at least twice the time, with figures reaching up to 53 subintervals, i.e., more than 
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a single day. However, when we analyze subsequent crossings we see the consequences of price-overshoots with negative gamma 
positions: The most negative gamma scenario of 80 contracts reaches the fundamental price slightly faster than the scenario without 
a dynamic hedger. However, it takes more than a full trading session to reach the fundamental price again after having overshot its 
target. In the most positive gamma scenario, the fundamental price is reached last but breaches it again from the other side the next 
day and will continue to do this in rapid succession.

Finally, we measure the frequency by which the price breaches the fundamental value once in equilibrium. After roughly 20 
crossings, the mean time between crossings becomes relatively constant and we measure its average. The mean crossing times show 
a direct relation between the gamma position and the degree by which the prices gravitate around the fundamental price.

In summary, these results reinforce the notion that both positive and negative gamma positioning hinder price discovery, yet their 
impact operates through distinct mechanisms. Negative gamma positioning accelerates price movements (potentially beneficial) but 
leads to price overshoots (detrimental for price discovery). On the other hand, positive gamma positioning restrains directional 
movement toward the fundamental value (detrimental for price discovery) while offering stability once the price aligns with its 
fundamental value (potentially beneficial).

4.4. Market failure

So far we have studied simulation set-ups that were unlikely to result in market failure. We did this with the idea that we did not 
want to bias our estimates and standard errors. Next, we apply variation to several coefficients of the model, and combine these with 
variations in the dynamic hedger’s gamma position. An important motivation for this paper is the occurrence of gamma squeezes. 
Therefore, we also study the proportion of market failure in the simulations. When a market buy (sell) order arrives with a size larger 
than the total offer (bid) volume, we could argue that the market has failed in its function to provide immediacy. By tracking the 
market failure rates across the simulations, we can assess whether gamma positions affect the propensity for markets to fail:

𝐹 = 1
𝑁

𝑁∑
𝑛=1
𝐼𝐹 ,𝑛, (26)

where 𝐼𝐹 is an indicator function denoting that a market failure occurred during the 𝑛th simulation.24 The results are presented in 
Table 5.

Increasing the proportion of market orders relative to the number of limit orders, 𝑖, increases the probability of market failure. 
Table 5 shows that this is indeed the case, but it can be seen that a positive gamma position prevents market failure even with 
immediacy as high as 0.4. A negative gamma position clearly increases the probability of market failure. Higher news variance, 𝜎𝑛
also has a more negative impact on market stability when dynamic hedgers are short gamma. Similar results are observed when we 
vary the deep-order book liquidity via increasing the decay rate 𝜁 : having less deep-order book liquidity is especially risky when the 
market is net short gamma, and not very risky when it is long gamma. Greater bid-ask spreads via a greater average market-making 
spread, 𝜇𝑝, are disruptive for short and long gamma positions, though slightly more so for short positions.

Finally, we run a number of experiments in which a fraction of 0.02 of the immediate orders, both informed and non-informed, 
have a much higher volume 𝑣𝑒 rather than a uniformly distributed volume between zero and one. These extreme volume orders are 
thus either ⟨𝑣𝑒, ∞⟩ or ⟨−𝑣𝑒, −∞⟩. This occurrence is rare enough to have an insignificant impact on dispersion metrics in the absence 
of dynamic hedgers. The results are presented in Panel E of Table 5. Here again, it becomes evident that long gamma positions among 
dynamic hedgers prevent market failure due to large shocks over neutral and negative gamma positions.

The increased propensity of market failure where there are negative gamma positions among dynamic hedgers coincides with the 
anecdotal evidence of gamma traps. While the presence of negative gamma within dynamic hedgers’ portfolios is good for liquidity in 
normal circumstances, it also has a low probability of consuming all liquidity, causing non-linear price moves and extreme volatility 
and markets moving far from their fundamental value.

5. Conclusion

This paper studies an important and often overlooked fact about financial markets, namely that the presence and net position of 
dynamic hedgers can have a substantial impact on market quality. The relative homogeneity of dynamic hedgers and the predictabil-

ity of their actions conditional on their gamma position make the gamma channel a potent medium for market quality improvement.

In a simulated market for a risky asset where trading orders are given by heterogeneous agents, we add a dynamic hedger with 
varying degrees of gamma positioning but with a preference for delta neutrality. Our findings highlight the significant impact of 
this dynamic hedger’s transactional behavior on market quality. Specifically, we observe that long gamma positions among dynamic 
hedgers enhance market quality across multiple dimensions: they lead to reduced volatility, increased liquidity, and a lower rate 
of market failure. However, the presence of long gamma dynamic hedgers typically negatively affects price discovery by acting as 
an additional noise trader. Conversely, negative gamma positions amplify volatility, reduce price discovery and greatly affect the 
propensity of markets to fail. We conclude that, markets featuring positive gamma dynamic hedgers will function better compared to 

24 Because market failure makes all the previous market quality metrics unintelligible (infinite bid-ask spread, infinite variance, etc.), and incommensurable (as 
failure can happen at different points in time, leading to unequal simulation lengths), we study market failure in isolation. Unless specifically mentioned, none of the 
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simulations used to calculate the previous metrics reached a failed state.
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Table 5

Failure rate of simulated markets.

-80 -60 -40 -20 0 20 40 60 80

Panel A: immediacy 𝑖

i = 0.3 0% 0% 0% 0% 0% 0% 0% 0% 0%

i= 0.325 5% 10% 0% 0% 0% 0% 0% 0% 0%

i = 0.35 50% 45% 5% 0% 0% 0% 0% 0% 0%

i = 0.375 95% 90% 45% 0% 20% 0% 0% 0% 0%

i= 0.4 100% 95% 100% 90% 85% 0% 0% 0% 0%

i = 0.45 100% 100% 100% 100% 100% 95% 65% 10% 10%

i= 0.5 100% 100% 100% 100% 100% 100% 100% 100% 95%

Panel B: news volatility 𝜎𝑛

𝜎𝑛=0.01 0% 0% 0% 0% 0% 0% 0% 0% 0%

𝜎𝑛=0.025 10% 0% 0% 0% 0% 0% 0% 0% 0%

𝜎𝑛=0.05 35% 15% 10% 5% 0% 0% 5% 10% 0%

𝜎𝑛=0.075 75% 70% 55% 35% 20% 20% 20% 20% 40%

𝜎𝑛=0.1 100% 100% 90% 75% 65% 55% 55% 70% 65%

𝜎𝑛=0.125 100% 100% 90% 85% 80% 100% 95% 80% 65%

Panel C: order decay 𝜁

𝜁=0.05 0% 0% 0% 0% 0% 0% 0% 0% 0%

𝜁=0.075 50% 15% 0% 0% 0% 0% 0% 0% 0%

𝜁=0.1 70% 40% 5% 0% 0% 0% 0% 0% 0%

𝜁=0.125 80% 80% 25% 5% 0% 0% 0% 0% 0%

𝜁=0.15 100% 100% 50% 15% 0% 0% 0% 0% 5%

𝜁=0.175 100% 100% 85% 35% 10% 5% 0% 0% 0%

Panel D: market maker spread 𝜇𝑝

𝜇𝑝 = −0.1 0% 0% 0% 0% 0% 0% 0% 0% 0%

𝜇𝑝 = −0.15 0% 5% 0% 0% 0% 0% 0% 0% 0%

𝜇𝑝 = −0.2 25% 20% 0% 0% 0% 0% 0% 0% 0%

𝜇𝑝 = −0.25 90% 75% 20% 0% 0% 0% 0% 0% 0%

𝜇𝑝 = −0.3 100% 100% 95% 20% 0% 10% 40% 30% 30%

𝜇𝑝 = −0.35 100% 100% 100% 90% 5% 75% 85% 75% 75%

Panel E: volume shocks 𝑣𝑒

𝑣𝑒 = 5 0% 0% 0% 0% 0% 0% 0% 0% 0%

𝑣𝑒 = 10 50% 5% 15% 10% 20% 0% 0% 0% 0%

𝑣𝑒 = 15 80% 60% 45% 85% 100% 15% 5% 0% 0%

𝑣𝑒 = 20 90% 95% 100% 100% 100% 65% 15% 0% 0%

𝑣𝑒 = 25 100% 100% 100% 100% 100% 100% 70% 15% 0%

𝑣𝑒 = 30 100% 100% 100% 100% 100% 100% 100% 75% 25%

Notes: This table presents the failure rate of simulated markets over 100 price paths, varied over the 
gamma position of the dynamic hedger and mutations in the variables immediacy, standard deviation 
of news shocks, order decay rate, market maker mid-price bias, and the magnitude of extreme shocks. A 
market failure is defined as the moment a market order arrives of greater magnitude than the opposing 
order book liquidity, as in Equation (26). Once a market fails, that part of the simulation is halted; hence, 
a market cannot fail more than once in the same run.

those populated by negative gamma dynamic hedgers. And when price discovery takes a lower weight in the subjective assessment 
of the various dimensions of market quality, one can conclude that having positive gamma dynamic hedgers is preferred over not 
having dynamic hedgers at all.

Bank trading desks are functionally delta-constrained and operate in a non-linear market. Therefore, the various capital regulation 
frameworks for banks also impact market quality. The existing regulation already disincentivizes negative gamma positions for 
systemic reasons through, e.g., value-at-risk, stressed-value-at-risk, and stress tests, via penalties for negative non-linear exposure. 
Our results, however, provide an argument for such constraints from a market quality perspective.

A potential application of the gamma market quality relation could be the selling of short-dated at-the-money options at a 
discount (e.g. by a central bank or a government) in order to prevent a market liquidity crisis.25 Should a situation arise where a 
lack of market maker involvement or a sudden extreme demand for immediacy causes deterioration of limit order book conditions to 
such an extent that market quality causes real-world effects, such as defaults, stop-outs, margin spirals, etc., then a ‘gamma infusion’ 
could offer a temporary remedy until the market makers can resume their activities. However, institutions should thoroughly assess 
the costs (selling options below market value) and potential side effects (moral hazard, disruption in the options market, etc.) of such 
intervention against the expected welfare loss due to the real-world implications of a liquidity crisis.

In contrast to such crisis measures, one might consider permanently increasing the natural average gamma position of an asset 
by selling (or providing) nontransferable options to delta-constrained market participants. These market participants, due to their 

25 To avoid directional market impact we recommend using at-the-money straddles, which is a combination of a put and call option with their strikes equal to the 
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forward price of the underlying security.
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delta constraint, will functionally act as dynamic hedgers. Given that they cannot sell the options, their impact on the existing option 
market of that asset is contained. This avenue is worth considering for regular issuers of securities, in particular debt securities. For 
such issuers, it might be economical, as the reduction of the illiquidity premium might offset the cost of the gamma remuneration. 
There is evidence of fee payments to market makers by debt issuers conditional on their liquidity provision, as shown by Buis et al. 
(2020) for the eurozone government bond market. It is even the case already in the European sovereign bond market, that for some 
bond issues the issuers provide payment not in the form of a cash fee but in the form of an embedded option (DSTA, 2022; NTMA, 
2021). The embedded option is called a non-competitive bid: the trading desks get the option to buy more debt from the issuer at 
the average auction price at a predetermined time in the future. Such an embedded option makes the trading desk functionally long 
gamma. Our study provides a strong argument that such non-competitive bid agreements should be utilized more by issuers given the 
market quality-enhancing features.26 As far as we know, the market quality effects of non-competitive bids have not been studied.

Our simulation model is highly stylized, and purpose-built to illustrate the effect of dynamic hedging on market quality. The 
purpose of this paper is to isolate the causal mechanism between gamma positioning and market quality, and thereby illustrate that 
the described mechanism is first-order. The real-life effect size, however, is hard to quantify. This particular model is not suitable for 
calibration to real-life data, which also makes it challenging to provide details on the effectiveness of the proposed policies. However, 
the model does generate testable implications. Although it is hard to find data on the net gamma position of market participants, it 
is possible to reason for which (type of) assets the net gamma position is higher or lower. As such, an empirical cross-sectional study 
would be an option.

Appendix A

Table A1

Simulation results without a news process, original values.

#options -80 -60 -40 -20 0 20 40 60 80

Panel A: General and Greeks

Returns 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean absolute delta 16.390 11.161 7.593 4.253 0 4.311 7.272 9.375 11.203

(0.279) (0.215) (0.144) (0.047) (0.000) (0.048) (0.060) (0.068) (0.061)

Average Gamma -117.750 -89.010 -59.520 -29.810 0 29.890 59.840 89.840 119.810

(0.205) (0.091) (0.042) (0.010) (0.000) (0.009) (0.014) (0.019) (0.022)

Panel B: Moments

Bid mean -0.103 -0.115 -0.128 -0.14 -0.151 -0.133 -0.119 -0.109 -0.101

(0.002) (0.002) (0.001) 0.000 0.000 0.000 0.000 (0.001) (0.001)

Bid standard dev. 0.033 0.032 0.032 0.032 0.033 0.035 0.036 0.038 0.039

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid skewness 7.685 7.261 7.215 7.513 7.791 8.466 8.919 9.377 9.733

(0.110) (0.069) (0.042) (0.032) (0.015) (0.020) (0.038) (0.032) (0.039)

Bid kurtosis 64.015 56.524 55.987 61.156 66.035 78.136 86.935 96.348 103.981

(2.049) (1.190) (0.712) (0.543) (0.257) (0.385) (0.759) (0.695) (0.861)

Panel C: Volatility

S.1 St.dev. 0.068 0.056 0.046 0.04 0.038 0.031 0.027 0.024 0.022

(0.005) (0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

S.2 High-low spread 0.428 0.311 0.241 0.196 0.173 0.143 0.127 0.12 0.116

(0.023) (0.014) (0.016) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002)

Panel D: Price Discovery

D.1 Auto Corr. 0.091 0.037 0.014 -0.084 -0.254 -0.36 -0.363 -0.350 -0.347

(0.017) (0.010) (0.013) (0.009) (0.010) (0.009) (0.012) (0.010) (0.010)

D.2 Sqd.price err 0.0050 0.0036 0.0023 0.0014 0.0014 0.0010 0.0008 0.0007 0.0002

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel E: Liquidity

L.1 Bid-Ask spread 0.029 0.034 0.042 0.054 0.072 0.063 0.057 0.052 0.049

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

L.2 Traded vol. 14.508 13.311 12.306 11.287 10.085 10.724 11.159 11.479 11.786

(0.073) (0.048) (0.058) (0.030) (0.026) (0.025) (0.033) (0.034) (0.034)

L.3 Order book vol. 636.10 487.30 393.00 328.50 268.70 410.00 552.20 692.40 820.50

(12.482) (11.840) (2.427) (1.174) (1.537) (2.600) (2.744) (4.002) (8.583)

L.4 LOS 3661 3049 2477 1904 1445 1734 2053 2450 2734

(391.20) (260.40) (121.40) (115.00) (75.40) (96.20) (121.80) (133.70) (189.10)

Notes: This table gives the general statistics (Panel A), moments (Panel B), volatility (Panel C), price discovery (Panel D), and liquidity 
(Panel E) metrics for the simulation model without exogenous news shocks. The simulation parameters are given in Table 1. All metrics 
are averages over the 100 simulation paths; numbers in parentheses represent standard errors over the 100 paths.

26 As opposed to our previous solution, such an option does not need to be a straddle. The positive price impact of the hedging of call options could be a desired 
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side effect. And issuers have a monopoly on issuing their own paper, so issuing more debt is less costly/inconvenient than being forced to buy back debt.
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Table A2

Simulation results with a news process, original values.

#options -80 -60 -40 -20 0 20 40 60 80

Panel A: General and Greeks

Proportion of flow 0.524 0.401 0.295 0.192 0 0.181 0.271 0.331 0.366

Returns 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean absolute delta 18.448 12.174 7.682 4.056 0 3.819 6.457 8.530 10.302

(0.196) (0.109) (0.044) (0.017) (0.000) (0.017) (0.028) (0.032) (0.035)

Average Gamma -117.610 -88.995 -59.631 -29.905 0 29.979 60.031 90.102 120.200

(0.429) (0.315) (0.213) (0.105) (0.000) (0.104) (0.204) (0.299) (0.384)

Panel B: Moments

Bid mean -0.105 -0.115 -0.126 -0.138 -0.148 -0.132 -0.122 -0.114 -0.108

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid standard dev. 0.033 0.032 0.031 0.031 0.032 0.033 0.034 0.035 0.036

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bid skewness 7.563 7.215 7.063 7.212 7.424 7.838 8.115 8.362 8.637

(0.024) (0.016) (0.011) (0.009) (0.008) (0.013) (0.017) (0.019) (0.022)

Bid kurtosis 61.840 55.875 53.483 56.065 59.662 66.522 71.342 75.838 81.082

(0.423) (0.265) (0.177) (0.151) (0.132) (0.229) (0.306) (0.368) (0.430)

Panel C: Volatility

S.1 St.dev. 0.143 0.129 0.120 0.116 0.115 0.110 0.106 0.102 0.098

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

S.2 High-low spread 0.672 0.583 0.526 0.503 0.487 0.448 0.422 0.403 0.381

(0.017) (0.014) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

S.3 Q-shock .05% -0.026 -0.034 -0.046 -0.047 -0.040 -0.036 -0.033 -0.030 -0.020

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

S.4 Q-shock .01% -0.042 -0.053 -0.068 -0.067 -0.058 -0.054 -0.050 -0.048 -0.022

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

S.5 H-shock .05% -0.244 -0.173 -0.129 -0.104 -0.094 -0.080 -0.072 -0.067 -0.058

(0.007) (0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Panel D: Price Discovery

D.1 Auto Corr. 0.127 0.061 0.019 -0.075 -0.252 -0.355 -0.359 -0.355 -0.345

(0.006) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

D.2 Sqd.price err 0.008 0.004 0.002 0.001 0.001 0.001 0.002 0.003 0.004

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

D.3 Corr(news,prices) 0.030 0.039 0.047 0.064 0.091 0.083 0.065 0.055 0.045

(0.004) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003)

Panel E: Liquidity

L.1 Bid-Ask spread 0.028 0.033 0.041 0.052 0.069 0.060 0.053 0.048 0.045

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

L.2 Traded vol. 14.691 13.410 12.276 11.236 10.087 10.755 11.212 11.597 11.935

(0.037) (0.026) (0.016) (0.011) (0.011) (0.012) (0.012) (0.013) (0.016)

L.3 Order book vol. 648.580 494.160 390.400 323.340 268.120 381.100 480.410 571.130 658.180

(4.780) (2.853) (1.314) (0.886) (0.770) (1.139) (1.833) (2.774) (3.745)

L.4 LOS 3990 2964 2267 1786 1504 1793 2133 2479 2865.200

(140.3) (86.0) (51.4) (28.6) (26.0) (29.6) (35.19 (42.8) (55.9)

Notes: This table gives the general statistics (Panel A), moments (Panel B), volatility (Panel C), price discovery (Panel D), and liquidity (Panel 
E) metrics for the simulation model with exogenous news. The simulation parameters are given in Table 1. All metrics are averages over the 
100 simulation paths; numbers in parentheses represent standard errors over the 100 paths.
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