10,104 research outputs found

    A quasilocal calculation of tidal heating

    Full text link
    We present a method for computing the flux of energy through a closed surface containing a gravitating system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two applications: a calculation of (i) the energy flux, via gravitational waves, through a surface near infinity and (ii) the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows how such methods can be used to study tidal effects in isolated gravitating systems.Comment: REVTex, 4 pages, 1 typo fixed, standard sign convention adopted for the Newtonian potential, a couple of lines added to the discussion of gauge dependent term

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Making graphene visible

    Full text link
    Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of silicon wafers with a certain thickness of silicon dioxide. We study graphene's visibility and show that it depends strongly on both thickness of silicon dioxide and light wavelength. We have found that by using monochromatic illumination, graphene can be isolated for any silicon dioxide thickness, albeit 300 nm (the current standard) and, especially, approx. 100 nm are most suitable for its visual detection. By using a Fresnel-law-based model, we quantitatively describe the experimental data without any fitting parameters.Comment: Since v1: minor changes to text and figures to improve clarity; references added. Submitted to Applied Physics Letters, 30-Apr-07. 3 pages, 3 figure

    X-ray Absorption Fine Structure in Embedded Atoms

    Full text link
    Oscillatory structure is found in the atomic background absorption in x-ray-absorption fine structure (XAFS). This atomic-XAFS or AXAFS arises from scattering within an embedded atom, and is analogous to the Ramsauer-Townsend effect. Calculations and measurements confirm the existence of AXAFS and show that it can dominate contributions such as multi-electron excitations. The structure is sensitive to chemical effects and thus provides a new probe of bonding and exchange effects on the scattering potential.Comment: 4 pages plus 2 postscript figures, REVTEX 3.

    Local lattice disorder in the geometrically-frustrated spin glass pyrochlore Y2Mo2O7

    Full text link
    The geometrically-frustrated spin glass Y2Mo2O7 has been considered widely to be crystallographically ordered with a unique nearest neighbor magnetic exchange interaction, J. To test this assertion, we present x-ray-absorption fine-structure results for the Mo and Y K edges as a function of temperature and compare them to results from a well-ordered pyrochlore, Tl2Mn2O7. We find that the Mo-Mo pair distances are significantly disordered at approximately right angles to the Y-Mo pairs. These results strongly suggest that lattice disorder nucleates the spin-glass phase in this material.Comment: 9 pages, 2 Postscript figures, Phys. Rev. B: Rapid, in pres

    Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

    Get PDF
    The combined local structure techniques, extended x-ray absorption fine structure (EXAFS) and neutron pair distribution function analysis, have been used for temperatures 4 <= T <= 330 K to rule out a large Jahn-Teller (JT) distortion of the Co-O bond in La1-xSrxCoO3 for a significant fraction of Co sites (x <= 0.35), indicating few, if any, JT-active, singly occupied e_g Co sites exist.Comment: 5 page

    Looking for the S-Z Effect towards Distant ROSAT Clusters of Galaxies

    Get PDF
    We report on observations of the Sunyaev-Zeldovich effect towards X-ray ROSAT clusters taken with a double channel (1.2 and 2 mm) photometer installed at the focus of the 15m SEST antenna in Chile. This paper describes the first results obtained for the high-z clusters S1077, A2744 and S295. Marginal detections were found for A2744 and at 1 mm for S1077. We discuss these data in terms of contamination of sources along the line of sight and give a constraint on the amplitude of the kinematic effect.Comment: 17 pg Latex file (using aasms4.sty) gzip'd tar'd uuencoded file including 1 ps figure, ApJ Letter in pres

    Hall Effect of La2/3(Ca,Pb)1/3MnO3 Single Crystals near the Critical Temperature

    Full text link
    The Hall resistivity rho_{xy} of a La_{2/3}(Ca,Pb)_{1/3}MnO_3 single crystal has been measured as a function of temperature and field. The overall behavior is similar to that observed previously in thin-films. At 5 K, rho_{xy} is positive and linear in field, indicating that the anomalous contribution RSR_S is negligible. However, the effective carrier density in a free electron model is n_{eff}=2.4 holes/Mn, even larger than the 0.85-1.9 holes/Mn reported for thin-films and far larger than the 0.33 holes/Mn expected from the doping level. As temperature increases, a strong, negative contribution to rho_{xy} appears, that we ascribe to R_S. Using detailed magnetization data, we separate the ordinary (\propto B) and anomalous (\propto M) contributions. Below T_C, R_S \propto rho_{xx}, indicating that magnetic skew scattering is the dominant mechanism in the metallic ferromagnetic regime. At and above the resistivity-peak temperature, we find that rho_{xy}/rho_{xx}M is a constant, independent of temperature and field. This implies that the anomalous Hall coefficient is proportional to the magnetoresistance. A different explanation based on two fluid model is also presented.Comment: revtex, 11 pages, 4 figure

    Magnetic-field-induced collapse of charge-ordered nanoclusters and the Colossal Magnetoresistance effect in Nd(0.3)Sr(0.3)MnO(3)

    Full text link
    We report synchrotron x-ray scattering studies of charge/orbitally ordered (COO) nanoclusters in Nd0.7_{0.7}Sr0.3_{0.3}MnO3_3. We find that the COO nanoclusters are strongly suppressed in an applied magnetic field, and that their decreasing concentration follows the field-induced decrease of the sample electrical resistivity. The COO nanoclusters, however, do not completely disappear in the conducting state, suggesting that this state is inhomogeneous and contains an admixture of an insulating phase. Similar results were also obtained for the zero-field insulator-metal transition that occurs as temperature is reduced. These observations suggest that these correlated lattice distortions play a key role in the Colossal Magnetoresistance effect in this prototypical manganite.Comment: 5 pages, 3 embedded eps figures; to appear in PRB Rapid Commumication
    corecore