27 research outputs found

    Zooplankton community resilience and aquatic environmental stability on aquaculture practices: a study using net cages

    No full text
    Fish farming in net cages causes changes in environmental conditions. We evaluated the resilience of zooplankton concerning this activity in Rosana Reservoir (Paranapanema River, PR-SP). Samples were taken near the net cages installed at distances upstream and downstream, before and after net cage installation. The resilience was estimated by the decrease in the groups' abundance after installing the net cages. The zooplankton community was represented by 106 species. The most abundant species were Synchaeta pectinata, S. oblonga, Conochilus coenobasis, Polyarthra dolichoptera and C. unicornis (Rotifera), Ceriodaphnia cornuta, Moina minuta, Bosmina hagmanni and C. silvestrii (Cladocera) and Notodiaptomus amazonicus (Copepoda). The resilience of microcrustaceans was affected in the growing points as this activity left the production environment for longer, delaying the natural ability of community responses. Microcrustaceans groups, mainly calanoid and cyclopoid copepods, had a different return rate. The net cage installation acted as a stress factor on the zooplankton community. Management strategies that cause fewer risks to the organisms and maximize energy flow may help in maintaining system stability

    Zooplankton community resilience and aquatic environmental stability on aquaculture practices: a study using net cages

    No full text
    Fish farming in net cages causes changes in environmental conditions. We evaluated the resilience of zooplankton concerning this activity in Rosana Reservoir (Paranapanema River, PR-SP). Samples were taken near the net cages installed at distances upstream and downstream, before and after net cage installation. The resilience was estimated by the decrease in the groups' abundance after installing the net cages. The zooplankton community was represented by 106 species. The most abundant species were Synchaeta pectinata, S. oblonga, Conochilus coenobasis, Polyarthra dolichoptera and C. unicornis (Rotifera), Ceriodaphnia cornuta, Moina minuta, Bosmina hagmanni and C. silvestrii (Cladocera) and Notodiaptomus amazonicus (Copepoda). The resilience of microcrustaceans was affected in the growing points as this activity left the production environment for longer, delaying the natural ability of community responses. Microcrustaceans groups, mainly calanoid and cyclopoid copepods, had a different return rate. The net cage installation acted as a stress factor on the zooplankton community. Management strategies that cause fewer risks to the organisms and maximize energy flow may help in maintaining system stability
    corecore