275 research outputs found

    Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension

    Get PDF
    This study investigates the origin of the strain rate effect on the mechanical behavior of a discontinuous glass fiber reinforced ethylene–propylene copolymer (EPC) matrix composite. This kind of composite materials are commonly used for automotive functional and structural applications. To this aim, a multi-scale experimental approach is developed. The deformation processes and the damage mechanisms observed at the microscopic scale are related to the material mechanical properties at the macroscopic scale. Tensile tests up to failure and specific interrupted tensile tests have been optimized and performed for high strain rates up to 200 s 1 to quantify the strain rate effect at different scales. High speed tensile tests have also been performed on the pure copolymer matrix. The threshold and the kinetic of damage have been quantified at both microscopic and macroscopic scales. Experimental results show that the composite behavior is strongly strain-rate dependent. The multi-scale analysis leads to the conclusion that the strain rate effect on the damage behavior of the EPC matrix composite is mainly due to the viscous behavior of the EPC matrix. SEM observations and analysis show that a localized deformation in the interface zone around fibers occurs at high strain rates and directly affects the visco-damage behavior. It is established that when the strain rate increases, the local deformation zone around the fibers behaves like a dissipation zone. Consequently, the damage initiation is delayed and the related kinetic is reduced with respect to the quasi-static loading case

    Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension

    Get PDF
    This study investigates the origin of the strain rate effect on the mechanical behavior of a discontinuous glass fiber reinforced ethylene–propylene copolymer (EPC) matrix composite. This kind of composite materials are commonly used for automotive functional and structural applications. To this aim, a multi-scale experimental approach is developed. The deformation processes and the damage mechanisms observed at the microscopic scale are related to the material mechanical properties at the macroscopic scale. Tensile tests up to failure and specific interrupted tensile tests have been optimized and performed for high strain rates up to 200 s 1 to quantify the strain rate effect at different scales. High speed tensile tests have also been performed on the pure copolymer matrix. The threshold and the kinetic of damage have been quantified at both microscopic and macroscopic scales. Experimental results show that the composite behavior is strongly strain-rate dependent. The multi-scale analysis leads to the conclusion that the strain rate effect on the damage behavior of the EPC matrix composite is mainly due to the viscous behavior of the EPC matrix. SEM observations and analysis show that a localized deformation in the interface zone around fibers occurs at high strain rates and directly affects the visco-damage behavior. It is established that when the strain rate increases, the local deformation zone around the fibers behaves like a dissipation zone. Consequently, the damage initiation is delayed and the related kinetic is reduced with respect to the quasi-static loading case

    Shape Memory Effect and Properties Memory Effect of Polyurethane

    Get PDF
    The relationship between shape and properties memory effect, especially viscoelastic properties of polyurethane under study is the main aim of this research work. Tensile tests have been performed in order to introduce 100% of deformation in the polyurethane samples. Under this deformation, stress–relaxation experiments have been performed in order to eliminate the residual stresses. This deformation of the samples has been fixed by cooling. Recovery tests, then, were carried out at different isothermal temperatures that varied from 30 C to 60 C. Viscoelastic behavior has been studied by a biparabolic model and by using the Cole–Cole method. It was shown that this model describes the behavior of the polymer at the different states of shape memory tests. The constants of this model then have been determined. This study leads to a better understanding of the mechanism of shape memory effect. The comparison between the virgin polymer and the polymer after a recovery test by DMTA (dynamic mechanical thermal analysis) and by Cole–Cole method has illustrated that the polymer does not obtain its initial properties even when it was totally regained its initial shape. These results have been confirmed by three successive shape memory tests on the same sample and by comparing the mechanical characteristics of different cycles because ‘‘shape memory effect’’ and ‘‘properties memory effect’’ do not follow the same mechanisms

    Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension

    Get PDF
    This study investigates the origin of the strain rate effect on the mechanical behavior of a discontinuous glass fiber reinforced ethylene–propylene copolymer (EPC) matrix composite. This kind of composite materials are commonly used for automotive functional and structural applications. To this aim, a multi-scale experimental approach is developed. The deformation processes and the damage mechanisms observed at the microscopic scale are related to the material mechanical properties at the macroscopic scale. Tensile tests up to failure and specific interrupted tensile tests have been optimized and performed for high strain rates up to 200 s 1 to quantify the strain rate effect at different scales. High speed tensile tests have also been performed on the pure copolymer matrix. The threshold and the kinetic of damage have been quantified at both microscopic and macroscopic scales. Experimental results show that the composite behavior is strongly strain-rate dependent. The multi-scale analysis leads to the conclusion that the strain rate effect on the damage behavior of the EPC matrix composite is mainly due to the viscous behavior of the EPC matrix. SEM observations and analysis show that a localized deformation in the interface zone around fibers occurs at high strain rates and directly affects the visco-damage behavior. It is established that when the strain rate increases, the local deformation zone around the fibers behaves like a dissipation zone. Consequently, the damage initiation is delayed and the related kinetic is reduced with respect to the quasi-static loading case

    Experimental underground facility to evaluate remote sensing instruments

    Get PDF
    International audienceSince the end of eighties optical remote sensing instruments have been used by French air quality monitoring networks. This type of instrument offers new perspectives to characterise the atmospheric pollution. Indeed, it is possible to measure simultaneously several pollutants like S02, NO, N02, Oa, hydrocarbons, and specific pollutants such äs NH3, naphtalene,..

    Ex-vivo detection of neural events using THz BioMEMS

    Full text link
    Background: Electromagnetic frequencies up to a few terahertz (THz) can yield real-time and noninvasive measurements on biological matter. Unfortunately, strong absorption in aqueous solutions and low spatial resolution return difficult free-space investigations. A new approach based on integrated THz circuits was used. The authors designed and fabricated a BioMEMS (Biological MicroElectro-Mechanical System) compatible with microfluidic circulation and electromagnetic propagation. It is dedicated to the ex vivo detection of nitric oxide synthase (NOS) activity, which is involved in neurodegenerative phenomena. Material/Methods: The biological model was a leech's central nervous system. After its injury, the production of NO was observed and measured in the far-THz spectral domain. The nerve cord was put inside a BioMEMS realized in polydimethylsiloxane (PDMS) sealed on a glass wafer. Glass is a good material for supporting high-frequency integrated waveguides such as coplanar waveguides (CPWs). Measurements were performed with vectorial network analyser (VNA). Results: The transmission parameter in the frequency range of 0.14-0.22 THz was measured through CPWs located just below the microchannel containing the injured leech nerve cord. The lesion caused a decreased transmission coefficient due to the NOS activity. L-NAME was injected inside the microchannel and it was verified that it inhibits this activity. Conclusions: It was demonstrated that THz spectroscopy can detect a biochemical event, such as NOS activity around an injured leech's nerve cord, in real time. Future studies will be dedicated to quantitative measurements of the reaction products using the sophisticated management of several drugs allowed with microfluidic microsystems

    High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension

    Get PDF
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to standard SMC with less than 30% weight fiber content. During crash events, structural parts are heavily exposed to high rates of loading and straining. This work is concerned with the development of an advanced experimental approach devoted to the micro and macroscopic characterization of A-SMC mechanical behavior under high-speed tension. High speed tensile tests are achieved using servo-hydraulic test equipment in order to get required high strain rates up to 100 s−1. Local deformation is measured through a contactless technique using a high speed camera. Numerical computations have led to an optimal design of the specimen geometry and the experimental damping systems have been optimized in terms of thickness and material properties. These simulations were achieved using ABAQUS explicit finite element code. The developed experimental methodology is applied for two types of A-SMC: Randomly Oriented (RO) and Highly Oriented (HO) plates. In the case of HO samples, two tensile directions were chosen: HO-0° (parallel to the Mold Flow Direction (MFD)) and HO-90° (perpendicular to the MFD). High speed tensile tests results show that A-SMC behavior is strongly strain-rate dependent although the Young's modulus remains constant with increasing strain rate. In the case of HO-0°, the stress damage threshold is shown an increase of 63%, when the strain rate varies from quasi-static (0.001 s−1) to 100 s−1. The experimental methodology was coupled to microscopic observations using SEM. Damage mechanisms investigation of HO and RO specimens showed a competition between two mechanisms: fiber-matrix interface debonding and pseudo-delamination between neighboring bundles of fibers. It is shown that pseudo-delamination cannot be neglected. In fact, this mechanism can greatly participate to energy absorption during crash. Moreover, the influence of fiber orientation and imposed velocity is studied. It is shown that high strain rate and oriented fiber in the tensile direction favor the pseudo-delamination

    Micro and macroscopic characterization of A-SMC under high speed tensile test

    Get PDF
    Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to standard SMC with less than 30% weight fiber content. During crash events, structural parts are heavily exposed to high rates of loading and straining. This work is concerned with the development of an advanced experimental approach devoted to the micro and macroscopic characterization of A-SMC mechanical behavior under high-speed tension. High speed tensile test are achieved using servo-hydraulic test equipment in order to get required high strain rates up to 100 s -1 . Local deformation is measured through a contactless technique using a high speed camera. Numerical computations have led to an optimal design of the specimen geometry and the experimental damping systems have been optimised in terms of thickness and material properties. These simulations were achieved using ABAQUS explicit finite element code. The developed experimental methodology is applied for two types of A-SMC: Randomly Oriented fibers (RO) and Highly Oriented fibers (HO) plates. In the case of HO samples, two tensile directions were chosen: HO-0° (parallel to the Mold Flow Direction (MFD)) and HO-90° (perpendicular to the MFD). High speed tensile tests results show that A-SMC behavior is strain-rate dependent although the young’s modulus remains constant with increasing strain rate. In the case of HO-0°, the stress damage threshold is shown an increase of 63%, when the strain rate varies from quasi-static (0.001 s -1 ) to 100 s -1

    The Influence of the Magnetic Field on the Properties of Neutron Star Matter

    Full text link
    In the mean field approximation of the relativistic σ\sigma-ω\omega-ρ\rho model, the magnetic fields are incorporated, and its influence on the properties of n-p-e neutron star matter are studied. When the strength of the magnetic field is weaker than 1018\sim 10^{18}G, the particle fractions and chemical potentials, matter energy density and pressure hardly change with the magnetic field; when the strength of the magnetic field is stronger than 1020\sim 10^{20}G, the above quantities change with the magnetic field evidently. Furthermore, the pressure is studied in both thermodynamics and hydrodynamics. The difference between these two ways exits in the high density region, that is, the thermal self-consistency may not be satisfied in this region if the magnetic field is considered.Comment: 7 pages, 4 figures, "Non-Perturbative Quantum Field Theory: Lattice and Beyond", Guangzhou, Chin
    corecore