5,369 research outputs found

    Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    Full text link
    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure

    Gene Interaction Network Suggests Dioxin Induces a Significant Linkage between Aryl Hydrocarbon Receptor and Retinoic Acid Receptor Beta

    Get PDF
    Gene expression arrays (gene chips) have enabled researchers to roughly quantify the level of mRNA expression for a large number of genes in a single sample. Several methods have been developed for the analysis of gene array data including clustering, outlier detection, and correlation studies. Most of these analyses are aimed at a qualitative identification of what is different between two samples and/or the relationship between two genes. We propose a quantitative, statistically sound methodology for the analysis of gene regulatory networks using gene expression data sets. The method is based on Bayesian networks for direct quantification of gene expression networks. Using the gene expression changes in HPL1A lung airway epithelial cells after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin at levels of 0.1, 1.0, and 10.0 nM for 24 hr, a gene expression network was hypothesized and analyzed. The method clearly demonstrates support for the assumed network and the hypothesis linking the usual dioxin expression changes to the retinoic acid receptor system. Simulation studies demonstrated the method works well, even for small samples

    LHCD and ICRF heating experiments in H-mode plasmas on EAST

    Get PDF
    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report

    GCā€“MS and GCā€“NPD Determination of Formaldehyde Dimethylhydrazone in Water Using SPME

    Get PDF
    Formaldehyde dimethylhydrazone (FADMH) is one of the important transformation products of residual rocket fuel 1,1-dimethylhydrazine (1,1-DMH). Thus, recent studies show that FADMH toxicity is comparable to that of undecomposed 1,1-DMH. In this study, a new method for quantification of FADMH in water based on solid phase microextraction (SPME) in combination with gas chromatography (GC) with mass spectrometric (MS) and nitrogen-phosphorus detection (NPD) is presented. Effects of SPME fiber coating type, extraction and desorption temperatures, extraction time, and pH on analyte recovery were studied. The optimized method used 65 micron polydimethylsiloxane/divinylbenzene fiber coating for 1Ā min headspace extractions at 30Ā Ā°C. Preferred pH and desorption temperature from the SPME fiber are >8.5 and 200Ā Ā°C, respectively. Detection limits were estimated to be 1.5 and 0.5Ā Ī¼gĀ Lāˆ’1 for MS and NPD, respectively. The method was applied to laboratory-scale experiments to quantify FADMH. Results indicate applicability for in situ sampling and analysis and possible first-time detection of free FADMH in water

    Weighted Fisher Discriminant Analysis in the Input and Feature Spaces

    Full text link
    Fisher Discriminant Analysis (FDA) is a subspace learning method which minimizes and maximizes the intra- and inter-class scatters of data, respectively. Although, in FDA, all the pairs of classes are treated the same way, some classes are closer than the others. Weighted FDA assigns weights to the pairs of classes to address this shortcoming of FDA. In this paper, we propose a cosine-weighted FDA as well as an automatically weighted FDA in which weights are found automatically. We also propose a weighted FDA in the feature space to establish a weighted kernel FDA for both existing and newly proposed weights. Our experiments on the ORL face recognition dataset show the effectiveness of the proposed weighting schemes.Comment: Accepted (to appear) in International Conference on Image Analysis and Recognition (ICIAR) 2020, Springe

    Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration

    Get PDF
    Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 Ɨ 10āˆ’11 for rs4733781; P = 1.0 Ɨ 10āˆ’10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosisā€“infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB
    • ā€¦
    corecore