13 research outputs found

    Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate

    Get PDF
    Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model

    Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity

    Get PDF
    Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described

    Chronic myelogenous leukemia: mechanisms underlying disease progression

    No full text
    Chronic myelogenous leukemia (CML), characterized by the BCR-ABL gene rearrangement, has been extensively studied. Significant progress has been made in the area of BCR-ABL-mediated intracellular signaling, which has led to a better understanding of BCR-ABL-mediated clinical features in chronic phase CML. Disease progression and blast crisis CML is associated with characteristic non-random cytogenetic and molecular events. These can be viewed as increased oncogenic activity or loss of tumor suppressor activity. However, what causes transformation and disease progression to blast crisis is only poorly understood. This is in part due to the lack of a good in vivo model of chronic phase CML even though animal models developed over the last few years have started to provide insights into blast crisis development. Thus, additional in vitro and in vivo studies will be needed to provide a complete understanding of the contribution of BCR-ABL and other genes to disease progression and to improve therapeutic approaches for blast crisis CML.status: publishe

    Novel therapies for chronic myelogenous leukemia

    No full text
    The BCR-ABL oncogene is essential to the pathogenesis of chronic myelogenous leukemia, and immune mechanisms play an important role in control of this disease. Understanding of the molecular pathogenesis of chronic myelogenous leukemia has led to the development of several novel therapies, which can be broadly divided into therapies based on 1) inhibition of the BCR-ABL oncogene expression, 2) inhibition of other genes important to the pathogenesis of chronic myelogenous leukemia, 3) inhibition of BCR-ABL protein function, and 4) immunomodulation. We have systematically reviewed each of these novel therapeutic approaches in this article.status: publishe
    corecore