36 research outputs found

    Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D supplementation for fracture prevention is widespread despite conflicting interpretation of relevant randomised controlled trial (RCT) evidence. This study summarises quantitatively the current evidence from RCTs and observational studies regarding vitamin D, parathyroid hormone (PTH) and hip fracture risk.</p> <p>Methods</p> <p>We undertook separate meta-analyses of RCTs examining vitamin D supplementation and hip fracture, and observational studies of serum vitamin D status (25-hydroxyvitamin D (25(OH)D) level), PTH and hip fracture. Results from RCTs were combined using the reported hazard ratios/relative risks (RR). Results from case-control studies were combined using the ratio of 25(OH)D and PTH measurements of hip fracture cases compared with controls. Original published studies of vitamin D, PTH and hip fracture were identified through PubMed and Web of Science databases, searches of reference lists and forward citations of key papers.</p> <p>Results</p> <p>The seven eligible RCTs identified showed no significant difference in hip fracture risk in those randomised to cholecalciferol or ergocalciferol supplementation versus placebo/control (RR = 1.13[95%CI 0.98-1.29]; 801 cases), with no significant difference between trials of <800 IU/day and ≥800 IU/day. The 17 identified case-control studies found 33% lower serum 25(OH)D levels in cases compared to controls, based on 1903 cases. This difference was significantly greater in studies with population-based compared to hospital-based controls (χ<sup>2</sup><sub>1 </sub>(heterogeneity) = 51.02, p < 0.001) and significant heterogeneity was present overall (χ<sup>2</sup><sub>16 </sub>(heterogeneity) = 137.9, p < 0.001). Serum PTH levels in hip fracture cases did not differ significantly from controls, based on ten case-control studies with 905 cases (χ<sup>2</sup><sub>9 </sub>(heterogeneity) = 149.68, p < 0.001).</p> <p>Conclusions</p> <p>Neither higher nor lower dose vitamin D supplementation prevented hip fracture. Randomised and observational data on vitamin D and hip fracture appear to differ. The reason for this is unclear; one possible explanation is uncontrolled confounding in observational studies. Post-fracture PTH levels are unrelated to hip fracture risk.</p

    Management of osteoporosis in patients hospitalized for hip fractures

    Get PDF
    Hip fracture is associated with high morbidity, mortality, and economic burden worldwide. It is also a major risk factor for a subsequent fracture. A literature search on the management of osteoporosis in patients with hip fracture was performed on the Medline database. Only one clinical drug trial was conducted in patients with a recent hip fracture. Further studies that specifically address post-fracture management of hip fracture are needed. The efficacy of anti-osteoporosis medication in older individuals and those at high risk of fall is reviewed in this paper. Adequate nutrition is vital for bone health and to prevent falls, especially in malnourished patients. Protein, calcium, and vitamin D supplementation is associated with increased hip BMD and a reduction in falls. Fall prevention, exercise, and balance training incorporated in a comprehensive rehabilitation program are essential to improve functional disability and survival. Exclusion of secondary causes of osteoporosis and treatment of coexistent medical conditions are also vital. Such a multidisciplinary team approach to the management of hip fracture patients is associated with a better clinical outcome. Although hip fracture is the most serious of all fractures, osteoporosis management should be prioritized to prevent deterioration of health and occurrence of further fracture

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Gene-expression profiling of peripheral blood mononuclear cells in sepsis

    No full text
    OBJECTIVES:: It has been shown that gene-expression profiling of circulating neutrophils could identify signature genes of sepsis. However, whether similar transcriptional changes occurred in peripheral blood mononuclear cells (PBMC) was not known. Using microarray technology, we performed gene-expression profiling of PBMC to identify signature genes that distinguish sepsis from noninfectious causes of systemic inflammatory response syndrome (SIRS), between Gram-positive and Gram-negative sepsis. DESIGN:: A cross-sectional, observational study. SETTING:: A 20-bed general intensive care unit of a tertiary referral hospital. PATIENTS:: Seventy critically ill patients (46 sepsis and 24 SIRS). INTERVENTIONS:: Intravenous blood was collected for leukocyte separation and RNA extraction. Gene-expression profiling was performed on PBMC using Affymetrix GeneChip microarrays with 54,675 transcripts. Data were divided into a training set (n = 35) and a validation set (n = 35). A molecular signature was developed in the training set using support vector machine and was then validated in the validation set. MEASUREMENTS AND MAIN RESULTS:: We identified a molecular signature of 138 genes that could differentiate between sepsis and SIRS patients with 91% and 80% accuracy in the training and validation sets, respectively. There were no signature genes that could differentiate between Gram-positive and Gram-negative sepsis. The expression of genes involved in inflammatory response and immune function was significantly reduced in septic patients when compared with those with SIRS. Genes involved in apoptosis, on the other hand, were more highly expressed in septic patients. CONCLUSION:: There was evidence of sepsis-related immunosuppression and reduced inflammatory response in mononuclear cells on a transcriptome level. These characteristic transcriptional changes can be used to aid the diagnosis of sepsis. © 2009 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins
    corecore