2 research outputs found

    Field Attractants for Pachnoda interrupta Selected by Means of GC-EAD and Single Sensillum Screening

    Get PDF
    The sorghum chafer, Pachnoda interrupta Olivier (Coleoptera: Scarabaeidae: Cetoniinae), is a key pest on sorghum, Sorghum bicolor (L.) Moench (Poaceae), in Ethiopia. At present there is a lack of efficient control methods. Trapping shows promise for reduction of the pest population, but would benefit from the development of attractive lures. To find attractants that could be used for control of P. interrupta, either by mass trapping or by monitoring as part of integrated pest management, we screened headspace collections of sorghum and the highly attractive weed Abutilon figarianum Webb (Malvaceae) for antennal activity using gas chromatograph-coupled electroantennographic detection (GC-EAD). Compounds active in GC-EAD were identified by combined gas chromatography and mass spectrometry (GC-MS). Field trapping suggested that attraction is governed by a few influential compounds, rather than specific odor blends. Synthetic sorghum and abutilon odor blends were attractive, but neither blend outperformed the previously tested attractants eugenol and methyl salicylate, of which the latter also was part of the abutilon blend. The strong influence of single compounds led us to search for novel attractive compounds, and to investigate the role of individual olfactory receptor neurons (ORNs) in the perception of kairomones. We screened the response characteristics of ORNs to 82 putative kairomones in single sensillum recordings (SSR), and found a number of key ligand candidates for specific classes of ORNs. Out of these key ligand candidates, six previously untested compounds were selected for field trapping trials: anethole, benzaldehyde, racemic 2,3-butanediol, isoamyl alcohol, methyl benzoate and methyl octanoate. The compounds were selected on the basis that they activated different classes of ORNs, thus allowing us to test potential kairomones that activate large non-overlapping populations of the peripheral olfactory system, while avoiding redundant multiple activations of the same ORN type. Field trapping results revealed that racemic 2,3-butanediol is a powerful novel attractant for P. interrupta

    Pheromone-based mating and aggregation in the Sorghum chafer, Pachnoda interrupta

    Get PDF
    Adults of the sorghum chafer, Pachnoda interrupta Olivier (Coleoptera: Scarabaeidae: Cetoniinae), form aggregations during the mating period in July, but also in October. The beetles aggregate on food sources, e.g., Acacia spp. trees or sorghum with ripe seeds, to feed and mate. During the mating season, field trapping experiments with live beetles as bait demonstrated attraction of males to unmated females, but not to mated females or males, indicating the presence of a female-emitted sex pheromone. Unmated females combined with banana (food source) attracted significantly more males and females than did unmated females alone. Other combinations of beetles with banana were not more attractive than banana alone. Thus, aggregation behavior appears to be guided by a combination of pheromone and host volatiles. Females and males were extracted with hexane during the mating period, and the extracts were compared by using GC-MS. In a field trapping experiment, 19 compounds found only in females were tested, both singly and in a mixture. Traps baited with one of the female-associated compounds, phenylacetaldehyde, caught significantly more beetles than any other treatment. However, the sex ratio of beetles caught in these traps did not differ from that of control traps and it is possible that other components may be involved in the sex pheromone signal. Furthermore, traps baited with a mixture of all 19 compounds attracted significantly fewer beetles than did phenylacetaldehyde alone
    corecore