17 research outputs found

    Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    Get PDF
    Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats

    Antigen presentation by MART-1 adenovirus-transduced interleukin-10-polarized human monocyte-derived dendritic cells

    No full text
    Dendritic cells (DC) play critical roles in generating an immune response and in inducing tolerance. Diverse microenvironmental factors can ‘polarize’ DC toward an immunogenic or non-immunogenic phenotype. Among the various microenvironmental factors, interleukin-10 (IL-10) exhibits a potent immunosuppressive effect on antigen-presenting cells (APC). Here, we show that monocyte-derived DC generated in the presence of IL-10 exhibit a profound down-regulation of many genes that are associated with immune activation and show that the IL-10-grown DC are poor stimulators of CD8(+) T cells in a strictly autologous and major histocompatibility complex (MHC) class I-restricted melanoma antigen recognized by T cells (MART-1) epitope presentation system. However, these IL-10-grown DC can efficiently activate the epitope-specific CD8(+) T cells when they are made to present the epitope following transduction with an adenoviral vector expressing the MART-1 antigen. In addition, we show that the MART-1 protein colocalizes with the MHC class I protein, equally well, in the iDC and in the DC cultured in presence of IL-10 when both DC types are infected with the viral vector. We also show that the vector transduced DC present the MART-1(27–35) epitope for a sustained period compared to the peptide pulsed DC. These data suggest that although DCs generated in the presence of IL-10 tend to be non-immunogenic, they are capable of processing and presenting an antigen when the antigen is synthesized within the DC
    corecore