25 research outputs found

    Intracellular Bacteria Encode Inhibitory SNARE-Like Proteins

    Get PDF
    Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival

    Network Analyses Reveal Novel Aspects of ALS Pathogenesis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention

    EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation

    No full text
    Here we show that EGF and EGF receptor (EGFR) are trafficked through a subpopulation of multivesicular endosomes/bodies (MVBs) that are distinct from morphologically identical vacuoles that label for the late endosomal marker lyso-bisphosphatidic acid (LBPA). EGF stimulation increases both MVB biogenesis and inward vesiculation within EGFR-containing MVBs. Deletion of annexin 1, a substrate of EGFR tyrosine kinase, abolishes the effect of EGF stimulation on inward vesiculation. This phenotype is reversible by transfection with wild-type but not Y21F phosphorylation mutant annexin 1. Deletion of annexin 1 has no effect on EGF-stimulated MVB biogenesis, suggesting that MVB biogenesis and inward vesiculation within MVB are mediated by separate mechanisms. Loss or depletion of annexin 1 has no effect on EGF degradation and causes only a small delay in EGFR degradation, indicating that annexin 1 operates downstream of Hrs- and ESCRT-mediated sorting and is required solely for EGF-stimulated inward vesiculation. Annexin 1 accumulates on internal vesicles of MVB after EGF-stimulated inward vesiculation, suggesting that it may be required for a late stage in inward vesiculation
    corecore