18 research outputs found

    Animal activity around the clock with no overt circadian rhythms:patterns, mechanisms and adaptive value

    No full text
    <p>Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.</p>

    Benefit of iodine density images to reduce out-of-field image artifacts at rapid kVp switching dual-energy CT

    No full text
    PURPOSE: To evaluate the reduction of out-of-field artifacts caused by body parts outside the field of view (FOV) at rapid kVp switching dual-energy CT (rsDECT). MATERIALS AND METHODS: This retrospective study was approved by our institutional review board. Informed consent was not required. We viewed 246 consecutive rsDECT thoracoabdominal scans to identify those with body parts outside the maximal FOV of 50 cm. The maximal length, thickness, and subjective severity of the out-of-field artifacts were recorded for the 40, 65, and 140 keV virtual monochromatic and iodine and water density images. Artifact severity was rated on a 6-point scale from 0 = absent to 5 = obscures intraabdominal/intrathoracic anatomic detail. Artifact thickness and severity scores were compared by t-test and Wilcoxon tests, respectively. RESULTS: In 20 of 246 scans (8.1%), body parts extended past the maximum FOV of 50 cm. The mean BMI of these 20 patients was 40.2 kg/m(2) (range, 26.83-61.69 kg/m(2)), and out-of-field artifacts occurred for all 20. The mean out-of-field artifact maximal length was 16.6 cm. The mean artifact thickness was significantly less for iodine density (0.6 mm) than for the 65 keV and water density images (8.4 and 13.5 mm, respectively, p < 0.001 each comparison). The mean artifact severity score was lower for iodine density (0.2) than for the 65 keV and water density images (2.5 and 2.6, respectively, p < 0.001 each). CONCLUSION: Iodine density images reduce out-of-field image artifact at rsDECT and assists in the evaluation of peripheral tissues that extend beyond the maximal CT FOV

    Killing activity of neutrophils is mediated through activation of proteases by K+ flux

    No full text
    According to the hitherto accepted view, neutrophils kill ingested microorganisms by subjecting them to high concentrations of highly toxic reactive oxygen species (ROS) and bringing about myeloperoxidase-catalysed halogenation. We show here that this simple scheme, which for many years has served as a satisfactory working hypothesis, is inadequate. We find that mice made deficient in neutrophil-granule proteases but normal in respect of superoxide production and iodinating capacity, are unable to resist staphylococcal and candidal infections. We also show that activation provokes the influx of an enormous concentration of ROS into the endocytic vacuole. The resulting accumulation of anionic charge is compensated for by a surge of K+ ions that cross the membrane in a pH-dependent manner. The consequent rise in ionic strength engenders the release of cationic granule proteins, including elastase and cathepsin G, from the anionic sulphated proteoglycan matrix. We show that it is the proteases, thus activated, that are primarily responsible for the destruction of the bacteria
    corecore