19 research outputs found

    Influence of taste disorders on dietary behaviors in cancer patients under chemotherapy

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>To determine the relationship between energy and nutrient consumption with chemosensory changes in cancer patients under chemotherapy.</p> <p>Methods</p> <p>We carried out a cross-sectional study, enrolling 60 subjects. Cases were defined as patients with cancer diagnosis after their second chemotherapy cycle (n = 30), and controls were subjects without cancer (n = 30). Subjective changes of taste during treatment were assessed. Food consumption habits were obtained with a food frequency questionnaire validated for Mexican population. Five different concentrations of three basic flavors --sweet (sucrose), bitter (urea), and a novel basic taste, umami (sodium glutamate)-- were used to measure detection thresholds and recognition thresholds (RT). We determine differences between energy and nutrient consumption in cases and controls and their association with taste DT and RT.</p> <p>Results</p> <p>No demographic differences were found between groups. Cases showed higher sweet DT (6.4 vs. 4.4 μmol/ml; p = 0.03) and a higher bitter RT (100 vs. 95 μmol/ml; <it>p </it>= 0.04) than controls. Cases with sweet DT above the median showed significant lower daily energy (2,043 vs.1,586 kcal; p = 0.02), proteins (81.4 vs. 54 g/day; <it>p </it>= 0.01), carbohydrates (246 vs.192 g/day; <it>p </it>= 0.05), and zinc consumption (19 vs.11 mg/day; <it>p </it>= 0.01) compared to cases without sweet DT alteration. Cases with sweet DT and RT above median were associated with lower completion of energy requirements and consequent weight loss. There was no association between flavors DT or RT and nutrient ingestion in the control group.</p> <p>Conclusion</p> <p>Changes of sweet DT and bitter RT in cancer patients under chemotherapy treatment were associated with lower energy and nutrient ingestion. Taste detection and recognition thresholds disorders could be important factors in malnutrition development on patients with cancer under chemotherapy treatment.</p

    Genome-Wide Analysis of Gene Expression in Primate Taste Buds Reveals Links to Diverse Processes

    Get PDF
    Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology
    corecore