177 research outputs found
Reply on `comment on our paper `Single two-level ion in an anharmonic-oscillator trap: Time evolution of the Q function and population inversion ''
We show here that the model Hamiltonian used in our paper for ion vibrating
in a q-analog harmonic oscillator trap and interacting with a classical
single-mode light field is indeed obtained by replacing the usual bosonic
creation and annihilation operators of the harmonic trap model by their
q-deformed counterparts. The approximations made in our paper amount to using
for the ion-laser interaction in a q-analog harmonic oscillator trap, the
operator F_{q}=exp{-(|\epsilon|^2}/2)}exp{i\epsilon A^{\dagger}}exp{i\epsilon
A}, which is analogous to the corresponding operator for ion in a harmonic
oscillator trap that is . In our article we do not claim to have diagonalized the
operator, , for which the basis states
|g,m> and |e,m> are not analytic vectors.Comment: Revtex, 4pages. To be Published in Physical Review A59, NO.4(April
99
Recommended from our members
Integrating timescales with time-transfer functions: A practical approach for an INTIMATE database
© 2014 Elsevier Ltd.The purpose of the INTIMATE project is to integrate palaeo-climate information from terrestrial, ice and marine records so that the timing of environmental response to climate forcing can be compared in both space and time. One of the key difficulties in doing this is the range of different methods of dating that can be used across different disciplines. For this reason, one of the main outputs of INTIMATE has been to use an event-stratigraphic approach which enables researchers to co-register synchronous events (such as the deposition of tephra from major volcanic eruptions) in different archives (Blockley etal., 2012). However, this only partly solves the problem, because it gives information only at particular short intervals where such information is present. Between these points the ability to compare different records is necessarily less precise chronologically. What is needed therefore is a way to quantify the uncertainties in the correlations between different records, even if they are dated by different methods, and make maximum use of the information available that links different records. This paper outlines the design of a database that is intended to provide integration of timescales and associated environmental proxy information. The database allows for the fact that all timescales have their own limitations, which should be quantified in terms of the uncertainties quoted. It also makes use of the fact that each timescale has strengths in terms of describing the data directly associated with it. For this reason the approach taken allows users to look at data on any timescale that can in some way be related to the data of interest, rather than specifying a specific timescale or timescales which should always be used. The information going into the database is primarily: proxy information (principally from sediments and ice cores) against depth, age depth models against reference chronologies (typically IntCal or ice core), and time-transfer functions that relate different timescales to each other, through the use of event stratigraphies or global phenomena such as cosmogenic isotope production rate variations
Dark pair coherent states of the motion of a trapped ion
We propose a scheme for generating vibrational pair coherent states of the
motion of an ion in a two-dimensional trap. In our scheme, the trapped ion is
excited bichromatically by three laser beams along different directions in the
X-Y plane of the ion trap. We show that if the initial vibrational state is
given by a two-mode Fock state, the final steady state, indicated by the
extinction of the fluorescence emitted by the ion, is a pure state. The
motional state of the ion in the equilibrium realizes that of the
highly-correlated pair coherent state.Comment: 14 pages, 3 figure
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Quantum mechanical counterpart of nonlinear optics
Raman-type laser excitation of a trapped atom allows one to realize the
quantum mechanical counterpart of phenomena of nonlinear optics, such as
Kerr-type nonlinearities, parametric amplification, and multi-mode mixing.
Additionally, huge nonlinearities emerge from the interference of the atomic
wave function with the laser waves. They lead to a partitioning of the phase
space accompanied by a significantly different action of the time evolution in
neighboring phase-space zones. For example, a nonlinearly modified coherent
"displacement" of the motional quantum state may induce strong amplitude
squeezing and quantum interferences.Comment: 6 pages, 4 figures, to be published in Phys. Rev. A 55 (June
Generation of mesoscopic superpositions of two squeezed states of motion for a trapped ion
Published versio
- …