9 research outputs found

    Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees

    No full text
    Use of reduced-impact logging (RIL) techniques has repeatedly been shown to reduce damage caused by logging. Unfortunately, these techniques do not necessarily ameliorate the low growth rates of many commercial species or otherwise assure recovery of the initial volume harvested during the next cutting cycle. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates on trees in general and on of future crop trees (FCTs) of 24 commercial timber species. The study was carried out in a moist tropical forest in Bolivia, where we monitored twelve 27-ha plots for 4 years. Plots received one of four treatments in which logging intensity and silvicultural treatments were varied: control (no logging); normal (reduced-impact) logging; normal logging and low-intensity silviculture; and, increased logging intensity and high-intensity silviculture. Tree growth rates increased with intensity of logging and silvicultural treatments. The growth rates of FCTs of commercial species were 50ā€“60% higher in plots that received silvicultural treatments than in the normal logging and control plots. Responses to silvicultural treatments varied among functional groups. The largest increase in growth rates was observed in FCTs belonging to the partially shade-tolerant and the shade-tolerant groups. These results indicate that silvicultural treatments, in addition to the use of RIL techniques, are more likely to result in a higher percentage of timber volume being recovered after the first cutting cycle than RIL alone

    Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    No full text
    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil conditions affect forest structure and diversity within each of the two forest types. After correcting for spatial effects, soil-vegetation relationships differed between the dry and the moist forest, being strongest in the dry forest. Furthermore, we hypothesized that soil nutrients would play a more important role in the moist forest than in the dry forest because vegetation in the moist forest is less constrained by water availability and thus can show its full potential response to soil fertility. However, contrary to our expectations, we found that soil fertility explained a larger number of forest variables in the dry forest (50 percent) than in the moist forest (17 percent). Shannon diversity declined with soil fertility at both sites, probably because the most dominant, shade-tolerant species strongly increased in abundance as soil fertility increased

    Seasonal Variation in the Fate of Seeds under Contrasting Logging Regimes

    No full text
    Seed predators and dispersers may drive the speed and structure of forest regeneration in natural ecosystems. Rodents and ants prey upon and disperse seeds, yet empirical studies on the magnitude of these effects are lacking. Here, we examined the role of ants and rodents on seed predation in 4 plant species in a successional gradient on a tropical rainforest island. We found that (1) seeds are mostly consumed rather than dispersed; (2) rates of seed predation vary by habitat, season, and species; (3) seed size, shape, and hardness do not affect the probability of being depredated. Rodents were responsible for 70% of seed predation and were negligible (0.14%) seed dispersers, whereas ants were responsible for only 2% of seed predation and for no dispersal. We detected seasonal and habitat effects on seed loss, with higher seed predation occurring during the wet season and in old-growth forests. In the absence of predators regulating seed-consumer populations, the densities of these resilient animals explode to the detriment of natural regeneration and may reduce diversity and carrying capacity for consumers and eventually lead to ecological meltdown
    corecore