2,275 research outputs found

    Thermodynamic instabilities in dynamical quark models with complex conjugate mass poles

    Get PDF
    We show that the CJT thermodynamic potential of dynamical quark models with a quark propagator represented by complex conjugate mass poles inevitably exhibits thermodynamic instabilities. We find that the minimal coupling of the quark sector to a Polyakov loop potential can strongly suppress but not completely remove such instabilities. This general effect is explicitly demonstrated in the framework of a covariant, chirally symmetric, effective quark model.Comment: Minor typos corrected, submitted versio

    A New Approach to Non-Commutative U(N) Gauge Fields

    Full text link
    Based on the recently introduced model of arXiv:0912.2634 for non-commutative U(1) gauge fields, a generalized version of that action for U(N) gauge fields is put forward. In this approach to non-commutative gauge field theories, UV/IR mixing effects are circumvented by introducing additional 'soft breaking' terms in the action which implement an IR damping mechanism. The techniques used are similar to those of the well-known Gribov-Zwanziger approach to QCD.Comment: 11 pages; v2 minor correction

    Hadronic correlations above the chiral/deconfinement transition

    Full text link
    The statistical bootstrap model is critically revised in order to include a medium-dependent resonance width in it. We show that a thermodynamic model with a vanishing width below the Hagedorn temperature T_H and a Hagedorn spectrum-like width above T_H may not only eliminate the divergence of the thermodynamic functions above T_H, but also gives a satisfactory description the lattice quantum chromodynamics (QCD) data on the energy density above the chiral/deconfinement transition as the main result of this contribution. This model allows to explain the absence of heavy resonance contributions in the fit of the experimentally measured particle ratios at SPS and RHIC energies.Comment: 9 pages, 2 figures, contribution to proceedings of NAPP 2003, Dubrovnik, Croatia, 26-31 May, 200

    Mott-Anderson freeze-out and the strange matter "horn"

    Full text link
    We discuss the s\sqrt{s}-dependence of the K+/Ď€+K^+/\pi^+ ratio in heavy-ion collisions (the "horn" effect) within a Mott-Anderson localization model for chemical freeze-out. The different response of pion and kaon radii to the hot and dense hadronic medium results in different freeze-out conditions. We demonstrate within a simple model that this circumstance enhances the "horn" effect relative to statistical models with universal chemical freeze-out.Comment: 8 pages, 4 figure

    A Generalization of Slavnov-Extended Non-Commutative Gauge Theories

    Get PDF
    We consider a non-commutative U(1) gauge theory in 4 dimensions with a modified Slavnov term which looks similar to the 3-dimensional BF model. In choosing a space-like axial gauge fixing we find a new vector supersymmetry which is used to show that the model is free of UV/IR mixing problems, just as in the previously discussed model in arXiv:hep-th/0604154. Finally, we present generalizations of our proposed model to higher dimensions.Comment: 25 pages, no figures; v2 minor correction

    On Non-Commutative U*(1) Gauge Models and Renormalizability

    Full text link
    Based on our recent findings regarding (non-)renormalizability of non-commutative U*(1) gauge theories [arxiv:0908.0467, arxiv:0908.1743] we present the construction of a new type of model. By introducing a soft breaking term in such a way that only the bilinear part of the action is modified, no interaction between the gauge sector and auxiliary fields occurs. Demanding in addition that the latter form BRST doublet structures, this leads to a minimally altered non-commutative U*(1) gauge model featuring an IR damping behavior. Moreover, the new breaking term is shown to provide the necessary structure in order to absorb the inevitable quadratic IR divergences appearing at one-loop level in theories of this kind. In the present paper we compute Feynman rules, symmetries and results for the vacuum polarization together with the one-loop renormalization of the gauge boson propagator and the three-point functions.Comment: 20 pages, 4 figures; v2-v4: clarified several points, and minor correction
    • …
    corecore