775 research outputs found

    How high the temperature of a liquid be raised without boiling?

    Full text link
    How high the temperature of a liquid be raised beyond its boiling point without vaporizing (known as the limit of superheat) is an interesting subject of investigation. A new method of finding the limit of superheat of liquids is presented here. The superheated liquids are taken in the form of drops suspended in visco elastic gel. The nucleation is detected acoustically by a sensitive piezo-electric transducer, coupled to a multi channel scaler and the nucleation is observed as a funtion of time and with increase of temperature. The limit of superheat measured by the present method supersedes all other measurements and theoretical predictions in reaching closest to the critical temperature and warrants improved theoretical predictions.Comment: 10 pages, 1 fig. Phys, Rev. E. (2000) in pres

    The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation

    Full text link
    Vapour-liquid equilibria (VLE) and the influence of an inert carrier gas on homogeneous vapour to liquid nucleation are investigated by molecular simulation for quaternary mixtures of carbon dioxide, nitrogen, oxygen, and argon. Canonical ensemble molecular dynamics simulation using the Yasuoka-Matsumoto method is applied to nucleation in supersaturated vapours that contain more carbon dioxide than in the saturated state at the dew line. Established molecular models are employed that are known to accurately reproduce the VLE of the pure fluids as well as their binary and ternary mixtures. On the basis of these models, also the quaternary VLE properties of the bulk fluid are determined with the Grand Equilibrium method. Simulation results for the carrier gas influence on the nucleation rate are compared with the classical nucleation theory (CNT) considering the "pressure effect" [Phys. Rev. Lett. 101: 125703 (2008)]. It is found that the presence of air as a carrier gas decreases the nucleation rate only slightly and, in particular, to a significantly lower extent than predicted by CNT. The nucleation rate of carbon dioxide is generally underestimated by CNT, leading to a deviation between one and two orders of magnitude for pure carbon dioxide in the vicinity of the spinodal line and up to three orders of magnitude in presence of air as a carrier gas. Furthermore, CNT predicts a temperature dependence of the nucleation rate in the spinodal limit, which cannot be confirmed by molecular simulation

    The de Rham homotopy theory and differential graded category

    Full text link
    This paper is a generalization of arXiv:0810.0808. We develop the de Rham homotopy theory of not necessarily nilpotent spaces, using closed dg-categories and equivariant dg-algebras. We see these two algebraic objects correspond in a certain way. We prove an equivalence between the homotopy category of schematic homotopy types and a homotopy category of closed dg-categories. We give a description of homotopy invariants of spaces in terms of minimal models. The minimal model in this context behaves much like the Sullivan's minimal model. We also provide some examples. We prove an equivalence between fiberwise rationalizations and closed dg-categories with subsidiary data.Comment: 47 pages. final version. The final publication is available at http://www.springerlink.co

    Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Get PDF
    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging

    CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN

    Get PDF
    SummaryTumor necrosis factor (TNF) induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD) in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS)-induced necroptosis was abrogated in Tnf−/− macrophages, a soluble TNF antagonist was not able to do so in Tnf+/+ macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk

    Superheated Microdrops as Cold Dark Matter Detectors

    Get PDF
    It is shown that under realistic background considerations, an improvement in Cold Dark Matter sensitivity of several orders of magnitude is expected from a detector based on superheated liquid droplets. Such devices are totally insensitive to minimum ionizing radiation while responsive to nuclear recoils of energies ~ few keV. They operate on the same principle as the bubble chamber, but offer unattended, continuous, and safe operation at room temperature and atmospheric pressure.Comment: 15 pgs, 4 figures include

    Homogeneous Bubble Nucleation driven by local hot spots: a Molecular Dynamics Study

    Full text link
    We report a Molecular Dynamics study of homogenous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures as had been suggested by Shen and Debenedetti (J. Chem. Phys. 111:3581, 1999). Our estimate of the bubble-nucleation rate is higher than predicted on the basis of Classical Nucleation Theory (CNT). Our simulations show that local temperature fluctuations correlate strongly with subsequent bubble formation - this mechanism is not taken into account in CNT
    corecore