53 research outputs found

    Insulin resistance in adolescents with Down syndrome: a cross-sectional study

    Get PDF
    BACKGROUND: The prevalence of diabetes mellitus is higher in individuals with Down syndrome (DS) than in the general population; it may be due to the high prevalence of obesity presented by many of them. The aim of this study was to evaluate the insulin resistance (IR) using the HOMA (Homeostasis Model Assessment) method, in DS adolescents, describing it according to the sex, body mass index (BMI) and pubertal development. METHODS: 15 adolescents with DS (8 males and 7 females) were studied, aged 10 to 18 years, without history of disease or use of medication that could change the suggested laboratory evaluation. On physical examination, the pubertal signs, acanthosis nigricans (AN), weight and height were evaluated. Fasting plasma glucose and insulin were analysed by the colorimetric method and RIA-kit LINCO, respectively. IR was calculated using the HOMA method. The patients were grouped into obese, overweight and normal, according to their BMI percentiles. The EPIINFO 2004 software was used to calculate the BMI, its percentile and Z score. RESULTS: Five patients were adults (Tanner V or presence of menarche), 9 pubertal (Tanner II – IV) and 1 prepubertal (Tanner I). No one had AN. Two were obese, 4 overweight and 9 normal. Considering the total number of patients, HOMA was 1.7 ± 1.0, insulin 9.3 ± 4.8 μU/ml and glucose 74.4 ± 14.8 mg/dl. The HOMA values were 2.0 ± 1.0 in females and 1.5 ± 1.0 in males. Considering the nutritional classification, the values of HOMA and insulin were: HOMA: 3.3 ± 0.6, 2.0 ± 1.1 and 1.3 ± 0.6, and insulin: 18.15 ± 1.6 μU/ml, 10.3 ± 3.5 μU/ml and 6.8 ± 2.8 μU/ml, in the obese, overweight and normal groups respectively. Considering puberty, the values of HOMA and insulin were: HOMA: 2.5 ± 1.3, 1.4 ± 0.6 and 0.8 ± 0.0, and insulin: 13.0 ± 5.8 μU/ml, 7.8 ± 2.9 μU/ml and 4.0 ± 0.0 μU/ml, in the adult, pubertal and prepubertal groups respectively. CONCLUSION: The obese and overweight, female and adult patients showed the highest values of HOMA and insulin

    Retroviral expression of a kinase-defective IGF-I receptor suppresses growth and causes apoptosis of CHO and U87 cells in-vivo

    Get PDF
    BACKGROUND: Phosphatidylinositol-3,4,5-triphosphate (PtdInsP3) signaling is elevated in many tumors due to loss of the tumor suppressor PTEN, and leads to constitutive activation of Akt, a kinase involved in cell survival. Reintroduction of PTEN in cells suppresses transformation and tumorigenicity. While this approach works in-vitro, it may prove difficult to achieve in-vivo. In this study, we investigated whether inhibition of growth factor signaling would have the same effect as re-expression of PTEN. METHODS: Dominant negative IGF-I receptors were expressed in CHO and U87 cells by retroviral infection. Cell proliferation, transformation and tumor formation in athymic nude mice were assessed. RESULTS: Inhibition of IGF-IR signaling in a CHO cell model system by expression of a kinase-defective IGF-IR impairs proliferation, transformation and tumor growth. Reduction in tumor growth is associated with an increase in apoptosis in-vivo. The dominant-negative IGF-IRs also prevented growth of U87 PTEN-negative glioblastoma cells when injected into nude mice. Injection of an IGF-IR blocking antibody αIR3 into mice harboring parental U87 tumors inhibits tumor growth and increases apoptosis. CONCLUSION: Inhibition of an upstream growth factor signal prevents tumor growth of the U87 PTEN-deficient glioma to the same extent as re-introduction of PTEN. This result suggests that growth factor receptor inhibition may be an effective alternative therapy for PTEN-deficient tumors

    Ultraviolet Radiation Dosimetry and Measurement

    No full text
    corecore