188 research outputs found
Recommended from our members
Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone‐depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900–2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone‐depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long‐range transport of relatively fresh “pollution” within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15–1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio
Cell culture-based analysis of postsynaptic membrane assembly in muscle cells
We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of
differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased
approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR)
redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking
advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of
myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events
connecting substrate laminin stimulation to complex AChR cluster formation. We validate the utility of this method for
biochemical and microscopy studies by demonstrating the roles of RhoGTPases in substrate laminin-induced complex
cluster assembly
Recommended from our members
Sea-ice-free Arctic during the Last Interglacial supports fast future loss
The Last Interglacial (LIG), a warmer period 130-116 ka before present, is a potential analog for future climate change. Stronger LIG summertime insolation at high northern latitudes drove Arctic land summer temperatures 4-5 °C higher than the preindustrial era. Climate model simulations have previously failed to capture these elevated temperatures, possibly because they were unable to correctly capture LIG sea-ice changes. Here, we show the latest version of the fully-coupled UK Hadley Center climate model (HadGEM3) simulates a more accurate Arctic LIG climate, including elevated temperatures. Improved model physics, including a sophisticated sea-ice melt-pond scheme, result in a complete simulated loss of Arctic sea ice in summer during the LIG, which has yet to be simulated in past generations of models. This ice-free Arctic yields a compelling solution to the longstanding puzzle of what drove LIG Arctic warmth and supports a fast retreat of future Arctic summer sea ice
The relationship between breastfeeding and weight status in a national sample of Australian children and adolescents
<p>Abstract</p> <p>Background</p> <p>Breastfeeding has been shown consistently in observational studies to be protective of overweight and obesity in later life. This study aimed to investigate the association between breastfeeding duration and weight status in a national sample of Australian children and adolescents.</p> <p>Methods</p> <p>A secondary analysis of the 2007 Australian National Children's Nutrition and Physical Activity Survey data involving 2066, males and females aged 9 to 16 years from all Australian states and territories. The effect of breastfeeding duration on weight status was estimated using multivariate logistic regression analysis.</p> <p>Results</p> <p>Compared to those who were never breastfed, children breastfed for ≥6 months were significantly less likely to be overweight (adjusted odds ratio: 0.64, 95%CI: 0.45, 0.91) or obese (adjusted odds ratio: 0.51, 95%CI: 0.29, 0.90) in later childhood, after adjustment for maternal characteristics (age, education and ethnicity) and children's age, gender, mean energy intake, level of moderate and vigorous physical activity, screen time and sleep duration.</p> <p>Conclusions</p> <p>Breastfeeding for 6 or more months appears to be protective against later overweight and obesity in this population of Australian children. The beneficial short-term health outcomes of breastfeeding for the infant are well recognised and this study provides further observational evidence of a potential long-term health outcome and additional justification for the continued support and promotion of breastfeeding to six months and beyond.</p
Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM
In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments
Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow
Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base
An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET)
Central nervous system primitive neuroectodermal tumours (CNS PNET) are high-grade, predominantly paediatric, brain tumours. Previously they have been grouped with medulloblastomas owing to their histological similarities. The WNT/β-catenin pathway has been implicated in many tumour types, including medulloblastoma. On pathway activation β-catenin (CTNNB1) translocates to the nucleus, where it induces transcription of target genes. It is commonly upregulated in tumours by mutations in the key pathway components APC and CTNNB1. WNT/β-catenin pathway status was investigated by immunohistochemical analysis of CTNNB1 and the pathway target cyclin D1 (CCND1) in 49 CNS PNETs and 46 medulloblastomas. The mutational status of APC and CTNNB1 (β-catenin) was investigated in 33 CNS PNETs and 22 medulloblastomas. CTNNB1 nuclear localisation was seen in 36% of CNS PNETs and 27% of medulloblastomas. A significant correlation was found between CTNNB1 nuclear localisation and CCND1 levels. Mutations in CTNNB1 were identified in 4% of CNS PNETs and 20% of medulloblastomas. No mutations were identified in APC. A potential link between the level of nuclear staining and a better prognosis was identified in the CNS PNETs, suggesting that the extent of pathway activation is linked to outcome. The results suggest that the WNT/β-catenin pathway plays an important role in the pathogenesis of CNS PNETs. However, activation is not caused by mutations in CTNNB1 or APC in the majority of CNS PNET cases
- …