7 research outputs found

    The amenity value of English nature: a hedonic price approach

    Get PDF
    Using a hedonic property price approach,we estimate the amenity value associated with proximity to habitats, designated areas, domestic gardens and other natural amenities in England. There is a long tradition of studies looking at the effect of environmental amenities and disamenities on property prices. But, to our knowledge, this is the first nationwide study of the value of proximity to a large number of natural amenities in England. We analysed 1 million housing transactions over 1996–2008 and considered a large number of environmental characteristics. Results reveal that the effects of many of these environmental variables are highly statistically significant, and are quite large in economic magnitude. Gardens, green space and areas of water within the census ward all attract a considerable positive price premium. There is also a strong positive effect from freshwater and flood plain locations, broadleaved woodland, coniferous woodland and enclosed farmland. Increasing distance to natural amenities such as rivers, National Parks and National Trust sites is unambiguously associated with a fall in house prices. Our preferred regression specifications control for unobserved labour market and other geographical factors using Travel to Work Area fixed effects, and the estimates are fairly insensitive to changes in specification and sample. This provides some reassurance that the hedonic price results provide a useful representation of the values attached to proximity to environmental amenities in England. Overall, we conclude that the housing market in England reveals substantial amenity value attached to a number of habitats, designations, private gardens and local environmental amenities

    The straw tracking detector for the Fermilab Muon g-2 Experiment

    Get PDF
    The Muon g−2g-2 Experiment at Fermilab uses a gaseous straw tracking detector to make detailed measurements of the stored muon beam profile, which are essential for the experiment to achieve its uncertainty goals. Positrons from muon decays spiral inward and pass through the tracking detector before striking an electromagnetic calorimeter. The tracking detector is therefore located inside the vacuum chamber in a region where the magnetic field is large and non-uniform. As such, the tracking detector must have a low leak rate to maintain a high-quality vacuum, must be non-magnetic so as not to perturb the magnetic field and, to minimize energy loss, must have a low radiation length. The performance of the tracking detector has met or surpassed the design requirements, with adequate electronic noise levels, an average straw hit resolution of (110±20) μ(110 \pm 20) \,\mum, a detection efficiency of 97% or higher, and no performance degradation or signs of aging. The tracking detector's measurements result in an otherwise unachievable understanding of the muon's beam motion, particularly at early times in the experiment's measurement period when there are a significantly greater number of muons decaying. This is vital to the statistical power of the experiment, as well as facilitating the precise extraction of several systematic corrections and uncertainties. This paper describes the design, construction, testing, commissioning, and performance of the tracking detector.Comment: 37 pages, 27 figure
    corecore