21 research outputs found

    Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation for Weaver syndrome in Brown Swiss cattle

    Get PDF
    Background: Bovine progressive degenerative myeloencephalopathy (Weaver syndrome) is a neurodegenerative disorder in Brown Swiss cattle that is characterized by progressive hind leg weakness and ataxia, while sensorium and spinal reflexes remain unaffected. Although the causal mutation has not been identified yet, an indirect genetic test based on six microsatellite markers and consequent exclusion of Weaver carriers from breeding have led to the complete absence of new cases for over two decades. Evaluation of disease status by imputation of 41 diagnostic single nucleotide polymorphisms (SNPs) and a common haplotype published in 2013 identified several suspected carriers in the current breeding population, which suggests a higher frequency of the Weaver allele than anticipated. In order to prevent the reemergence of the disease, this study aimed at mapping the gene that underlies Weaver syndrome and thus at providing the basis for direct genetic testing and monitoring of today's Braunvieh/Brown Swiss herds. Results: Combined linkage/linkage disequilibrium mapping on Bos taurus chromosome (BTA) 4 based on Illumina Bovine SNP50 genotypes of 43 Weaver-affected, 31 Weaver carrier and 86 Weaver-free animals resulted in a maximum likelihood ratio test statistic value at position 49,812,384 bp. The confidence interval (0.853 Mb) determined by the 2-LOD drop-off method was contained within a 1.72-Mb segment of extended homozygosity. Exploitation of whole-genome sequence data from two official Weaver carriers and 1145 other bulls that were sequenced in Run4 of the 1000 bull genomes project showed that only a non-synonymous SNP (rs800397662) within the PNPLA8 gene at position 49,878,773 bp was concordant with the Weaver carrier status. Targeted SNP genotyping confirmed this SNP as a candidate causal mutation for Weaver syndrome. Genotyping for the candidate causal mutation in a random sample of 2334 current Braunvieh animals suggested a frequency of the Weaver allele of 0.26 %. Conclusions: Through combined use of exhaustive sequencing data and SNP genotyping results, we were able to provide evidence that supports the non-synonymous mutation at position 49,878,773 bp as the most likely causal mutation for Weaver syndrome. Further studies are needed to uncover the exact mechanisms that underlie this syndrome

    Ability of biolectric impedance to predict fat-free mass in prepubertal children

    No full text
    Measurements of body composition are being made increasingly widely in pediatrics. Tetrapolar whole body impedance (BI) is particularly suitable as a method of estimating boyd composition in children and is therefore the subject of great interest at present. However, the ability of BI to accurately estimate fat-free mass (FFM) in children is unclear, and users of BI are faced with a growing choice of prediction equations for estimation of FFM. Studies in adults have suggested that choice of prediction equation can have a profound effect on the estimate obtained. The aim of the present study was to measure the ability of four published pediatric BI equations to predict FFM in 98 Caucasian prepubertal children (mean age 9.0 y). For three of the published equations, limits of agreement between predicted and reference FFM were wide and distinct biases were apparent. With mean FFM of 25 kg, the equation of L. Cordain et al. overestimated reference FFM (95% CI +2.1 to +3.1 kg), whereas those of P. Deurenberg et al. (95% CI -1.9 to -2.9 kg) and F. Schaefer et al. (95% CI -1.4 to -2.5 kg) systematically underestimated reference FFM. The equation of Houtkooper et al. (95% CI -0.2 to +0.8 kg) predicted FFM with negligible bias and had narrower limits of agreement relative to the reference method than the other three equations tested. We conclude that the ability of BI to predict body composition in children depends on the equation chosen and that the general applicability of BI equations cannot be safely assumed. Cross-validation of BI equations is recommended before they are used routinely for estimation of body composition in children

    Estimation of body fatness from body mass index and bioelectrical impedance: comparison of New Zealand European, Maori and Pacific Island children

    No full text
    Objective: To compare percentage body fat (%BF) for a given body mass index (BMI) among New Zealand European, Maori and Pacific Island children. To develop prediction equations based on bioimpedance measurements for the estimation of fat-free mass (FFM) appropriate to children in these three ethnic groups. Design: Cross-sectional study. Purposive sampling of schoolchildren aimed at recruiting three children of each sex and ethnicity for each year of age. Double cross-validation of FFM prediction equations developed by multiple regression. Setting: Local schools in Auckland. Subjects: Healthy European, Maori and Pacific Island children (n = 172, 83 M, 89 F, mean age 9.4 +/- 2.8(s. d.), range 5 - 14 y). Measurements: Height, weight, age, sex and ethnicity were recorded. FFM was derived from measurements of total body water by deuterium dilution and resistance and reactance were measured by bioimpedance analysis. Results: For fixed BMI, the Maori and Pacific Island girls averaged 3.7% lower % BF than European girls. For boys a similar relation was not found since BMI did not significantly influence % BF of European boys ( P = 0.18). Based on bioimpedance measurements a single prediction equation was developed for all children: FFM (kg) = 0.622 height (cm)(2)/ resistance +0.234 weight (kg)+1.166, R-2 = 0.96, s. e. e. = 2.44 kg. Ethnicity, age and sex were not significant predictors. Conclusions: A robust equation for estimation of FFM in New Zealand European, Maori and Pacific Island children in the 5 - 14 y age range that is more suitable than BMI for the determination of body fatness in field studies has been developed. Sponsorship: Maurice and Phyllis Paykel Trust, Auckland University of Technology Contestable Grants Fund and the Ministry of Health

    The relationship of high sensitivity C-reactive protein to percent body fat mass, body mass index, waist-to-hip ratio, and waist circumference in a Taiwanese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-sensitivity C-reactive protein (hs-CRP) is an easily measured inflammatory biomarker. This study compared the association of percent body fat mass (%FM), body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) with hs-CRP in a Taiwanese population.</p> <p>Methods</p> <p>A total of 1669 subjects aged 40-88 years were recruited in 2004 in a metropolitan city in Taiwan. The relationships between obesity indicators and a high level of hs-CRP were examined using multivariate logistic regression analysis. The upper quartile of the hs-CRP distributions was defined as the high category group. The areas under the curve (AUCs) of the receiver operating characteristic curves were calculated for all obesity indicators to compare their relative ability to correctly classify subjects with a high level of hs-CRP.</p> <p>Results</p> <p>After multivariate adjustment, the odds ratio for %FM was the only significant indicator that was associated with a high level of hs-CRP in men (1.55, 95% CI: 1.07-2.25). All indicators were associated with a high level of hs-CRP in women. In men, the AUCs for %FM were significantly higher than those for BMI, WHR, and WC, when demographic and lifestyle behaviors were considered (p < 0.001 for all comparisons), but they were not significantly different in females.</p> <p>Conclusions</p> <p>Our study demonstrates that %FM is the only obesity indicator that is strongly associated with a high level of hs-CRP after adjusting for sociodemographic factors, lifestyle behaviors and components of metabolic syndrome in both genders in a Taiwanese population aged forty years and over. In men, %FM had the greatest ability to classify subjects with a high level of hs-CRP when only demographic and lifestyle behaviors were considered. Our study finding has important implications for the screening of obesity in community settings.</p
    corecore