39 research outputs found

    Biofeedback for training balance and mobility tasks in older populations: a systematic review

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity.</p> <p>Objective</p> <p>To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults.</p> <p>Data Sources</p> <p>PubMed (1950-2009), EMBASE (1988-2009), Web of Science (1945-2009), the Cochrane Controlled Trials Register (1960-2009), CINAHL (1982-2009) and PsycINFO (1840-2009). The search strategy was composed of terms referring to biofeedback, balance or mobility, and older adults. Additional studies were identified by scanning reference lists.</p> <p>Study Selection</p> <p>For evaluating effectiveness, 2 reviewers independently screened papers and included controlled studies in older adults (i.e. mean age equal to or greater than 60 years) if they applied biofeedback during repeated practice sessions, and if they used at least one objective outcome measure of a balance or mobility task.</p> <p>Data Extraction</p> <p>Rating of study quality, with use of the Physiotherapy Evidence Database rating scale (PEDro scale), was performed independently by the 2 reviewers. Indications for (non)effectiveness were identified if 2 or more similar studies reported a (non)significant effect for the same type of outcome. Effect sizes were calculated.</p> <p>Results and Conclusions</p> <p>Although most available studies did not systematically evaluate feasibility aspects, reports of high participation rates, low drop-out rates, absence of adverse events and positive training experiences suggest that biofeedback methods can be applied in older adults. Effectiveness was evaluated based on 21 studies, mostly of moderate quality. An indication for effectiveness of visual feedback-based training of balance in (frail) older adults was identified for postural sway, weight-shifting and reaction time in standing, and for the Berg Balance Scale. Indications for added effectiveness of applying biofeedback during training of balance, gait, or sit-to-stand transfers in older patients post-stroke were identified for training-specific aspects. The same applies for auditory feedback-based training of gait in older patients with lower-limb surgery.</p> <p>Implications</p> <p>Further appropriate studies are needed in different populations of older adults to be able to make definitive statements regarding the (long-term) added effectiveness, particularly on measures of functioning.</p

    Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart.

    No full text
    Recovery of postischemic function may be limited by energy synthesis by mitochondria, energy transfer via the creatine kinase reaction, or energy utilization at myofibrils. To identify the limiting step, we defined the relations among oxygen consumption, creatine kinase reaction velocity and cardiac performance in myocardium reperfused following mild, moderate, and severe ischemia. Isolated isovolumic ferret hearts were perfused with Krebs-Henseleit buffer at 37 degrees C. After 30 minutes of control, hearts were made ischemic for 20, 40, or 60 minutes and reperfused for 40 minutes. During preischemia, cardiac performance (estimated as the rate-pressure product), was 14.8 x 10(3) mm Hg/min, oxygen consumption was 16.7 mumol/min/g dry weight, and creatine kinase reaction velocity measured by 31P-nuclear magnetic resonance saturation transfer was 12.7 mM/sec. For hearts reperfused after 20, 40, or 60 minutes of ischemia, rate-pressure product was 11.5, 6.5, and 1.1 x 10(3) mm Hg/min; oxygen consumption was 13.5, 14.2, and 6.9 mumol/min/g dry weight; and creatine kinase reaction velocity was 9.6, 5.0, and 2.0 mM/sec, respectively. Thus, with increasing severity of insult, creatine kinase reaction velocity decreased monotonically with performance (r = 0.99). Changes in creatine kinase reaction velocity were predicted from the creatine kinase rate equation (r = 0.99; predicted vs. measured velocity) and can therefore be explained by changes in substrate concentration. Oxygen consumption did not correlate with performance or creatine kinase velocity, consistent with abnormalities in mitochondrial energy production. In all cases, creatine kinase reaction velocity was an order of magnitude faster than the maximal rate of ATP synthesis estimated by oxygen consumption. We conclude that, in postischemic myocardium, creatine kinase reaction velocity decreases in proportion to performance, but high-energy phosphate transfer does not limit availability of high-energy phosphate for contraction

    Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart.

    No full text
    Recovery of postischemic function may be limited by energy synthesis by mitochondria, energy transfer via the creatine kinase reaction, or energy utilization at myofibrils. To identify the limiting step, we defined the relations among oxygen consumption, creatine kinase reaction velocity and cardiac performance in myocardium reperfused following mild, moderate, and severe ischemia. Isolated isovolumic ferret hearts were perfused with Krebs-Henseleit buffer at 37 degrees C. After 30 minutes of control, hearts were made ischemic for 20, 40, or 60 minutes and reperfused for 40 minutes. During preischemia, cardiac performance (estimated as the rate-pressure product), was 14.8 x 10(3) mm Hg/min, oxygen consumption was 16.7 mumol/min/g dry weight, and creatine kinase reaction velocity measured by 31P-nuclear magnetic resonance saturation transfer was 12.7 mM/sec. For hearts reperfused after 20, 40, or 60 minutes of ischemia, rate-pressure product was 11.5, 6.5, and 1.1 x 10(3) mm Hg/min; oxygen consumption was 13.5, 14.2, and 6.9 mumol/min/g dry weight; and creatine kinase reaction velocity was 9.6, 5.0, and 2.0 mM/sec, respectively. Thus, with increasing severity of insult, creatine kinase reaction velocity decreased monotonically with performance (r = 0.99). Changes in creatine kinase reaction velocity were predicted from the creatine kinase rate equation (r = 0.99; predicted vs. measured velocity) and can therefore be explained by changes in substrate concentration. Oxygen consumption did not correlate with performance or creatine kinase velocity, consistent with abnormalities in mitochondrial energy production. In all cases, creatine kinase reaction velocity was an order of magnitude faster than the maximal rate of ATP synthesis estimated by oxygen consumption. We conclude that, in postischemic myocardium, creatine kinase reaction velocity decreases in proportion to performance, but high-energy phosphate transfer does not limit availability of high-energy phosphate for contraction

    Helicopter primary retrieval: tasking who should do it?

    No full text
    Background: Cairns Base Hospital utilizes a helicopter retrieval system, which until 2001 had been tasked and staffed by emergency physicians. Since 2001, the ambulance service has assumed the role of both tasking and staffing the helicopter with intensive care paramedics. The present study examines whether the change has resulted in different activation patterns and patient outcomes.\ud \ud Method: A retrospective chart review over 4 consecutive years, comparing the two groups, was carried out examining 30 day mortality, length of in-hospital stay, transfer rates, the Revised Trauma Score where appropriate and rates of discharge directly from the ED.\ud \ud Results: A total of 374 patients were retrieved (211 patients in the emergency physician group from 1 April 1999 to 31 March 2001 and 163 in the ambulance group from 1 April 2001 to 31 March 2003) over the 4 year period. The demographics of the two groups were similar. Fifty-four patients in the ambulance group (33.1%) were discharged from the ED without admission while 31 (14.7%) were discharged from the physician group. This was statistically significant (P = 0.0001). There were no other significant differences between the two groups. The subgroup of patients admitted also did not show any significant difference in outcomes.\ud \ud Conclusion: The similarities in outcomes for admitted patients support the view that both groups have similar tasking criteria for high-acuity patients and suggest that paramedics are as efficacious as physicians in delivering prehospital care in this group of patients. However, for lower-acuity patients, there is a statistically significant higher rate of clinically unnecessary taskings by the ambulance group. Given the recent fatal aeromedical accidents in Queensland (Thursday Island 1998, Rockhampton 1999 and Mackay 2003), it would seem prudent to reduce clinically unnecessary retrievals through clinical coordination with appropriately qualified emergency physicians
    corecore