97 research outputs found
Non-Fermi-liquid d-wave metal phase of strongly interacting electrons
Developing a theoretical framework for conducting electronic fluids
qualitatively distinct from those described by Landau's Fermi-liquid theory is
of central importance to many outstanding problems in condensed matter physics.
One such problem is that, above the transition temperature and near optimal
doping, high-transition-temperature copper-oxide superconductors exhibit
`strange metal' behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase
could shed new light on the interesting low-temperature behaviour in the
pseudogap regime and on the d-wave superconductor itself. Here we present a
theory for a specific example of a strange metal---the 'd-wave metal'. Using
variational wavefunctions, gauge theoretic arguments, and ultimately
large-scale density matrix renormalization group calculations, we show that
this remarkable quantum phase is the ground state of a reasonable microscopic
Hamiltonian---the usual t-J model with electron kinetic energy and two-spin
exchange supplemented with a frustrated electron `ring-exchange' term,
which we here examine extensively on the square lattice two-leg ladder. These
findings constitute an explicit theoretical example of a genuine
non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5
figures of Supplementary Information; this is approximately the version
published in Nature, minus various subedits in the main tex
Non-Raft AC2 Defines a cAMP Signaling Compartment That Selectively Regulates IL-6 Expression in Airway Smooth Muscle Cells
Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool
Mate-Finding as an Overlooked Critical Determinant of Dispersal Variation in Sexually-Reproducing Animals
Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly ‘fat-tailed’ at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms
- …